赵燕飞,王 勇
(1.重庆大学 经济与工商管理学院,重庆400044;2.重庆大学 现代物流重点实验室,重庆400044)
双边市场作为中间平台促使两边连接的用户完成相应的交易,在社会经济生活中发挥着不可替代的作用。而在双边平台发展成熟的中后期,双边平台所连接的一边用户(买方),会对某一平台形成明显的偏好,使得买方用户具有了单归属的属性,比如有的消费者只信任天猫商城,而有的只信任京东商城。而另一边用户(卖方),出于生存和利润最大化的角度,有的卖方只入驻一个平台,有的卖方同时入驻多个平台,使得卖方用户具有了部分多归属的属性。在卖方部分多归属的情况下,平台则不需要通过额外的竞争手段争夺卖方[1],此时平台更多地是把注意力集中在买方用户的竞争上,正如现实生活中买方用户较之卖方用户会享受到更多的免费增值服务(基于此本文的增值服务是指平台为买方提供的免费增值服务)[2,3],像传统制造业一样,平台之间的竞争从以价格为主的竞争转向服务竞争[4],以此来吸引更多的买方用户,进而由于交叉网络外部性吸引更多的卖方用户[5,6]。因 此 本 文 基 于 上 述 客 观 现 象,运 用Hotelling模型刻画了两个相互竞争的差异化双边平台,在卖方用户部分多归属和买方用户单归属的情况下,为了更好地突出研究重点,忽略平台在卖方之间微弱的竞争力度,研究此时平台应如何制定向买方提供的增值服务水平以及对双方的定价以取得优势地位。
与本文相关的研究领域主要有双边市场以及竞争双边平台的增值服务和定价策略。关于双边市场的研究主要有:Armstrong[1]研究得到相对于用户的单归属还是多归属,价格结构和交叉网络外部性是影响均衡定价的关键因素。Belleflamme 和Toulemonde[7]在Armstrong 模型的基础上考虑了组内交叉网络外部性,认为组间交叉网络外部性和组内交叉网络外部性共同影响着平台、买方和卖方三者之间的交易特征。Rochet 和Tirole[8]分析了竞争环境下双边市场的定价策略以及价格结构对双边市场利润影响的内在逻辑。邹佳等[9]在先加入一边的用户对后加入一边的用户的数量形成适应性预期的条件下,研究双边平台的动态最优价格。张凯等[10]建立了两阶段动态定价模型,得到平台在不同阶段时统一定价和歧视定价的组合策略。Chen 和Huang[11]研究了产品差异化程度对双边市场定价策略的影响,认为降低交易费可以提高消费者和商家的接受度以及交易量。Hagiu 和Haaburda[12]研究了垄断和竞争对双边平台利润的影响。Zhang 和Liu[13]研究得到价格歧视可以吸引更多的用户或者增加平台的利润,但两者不能同时实现,且价格歧视会增加竞争强度。Armstrong和Wright[14]考虑用户多归属的同时假设卖方同质买方异质,得到在均衡状态下卖方利润为零。Wang 等[15]以O2O 平台为研究对象,分析了政府管制对两个相互竞争的、给予用户补贴的O2O 平台的市场均衡状态、社会福利以及O2O 平台安全性的影响。以上关于双边市场的文献多数是从交叉网络外部性、用户归属性角度研究了平台的定价问题,没有研究平台的服务策略。
关于增值服务的研究,有关制造工业领域内的文献比较多,关于竞争双边平台增值服务和定价策略的现有文献很少,目前主要有Duo 等[16],Duo 和He[17]均以双边市场为研究对象,分别研究了单个双边市场在有无增值服务投资成本限制情况下的最优定价以及增值服务策略,对提供增值服务前后价格的变化、最优定价的正负性进行了分析。本文不同的是研究了竞争双边平台在卖方用户部分多归属的竞争环境下如何制定最优的定价以及买方增值服务策略,得到了均衡状态下两个平台的最优定价以及最优增值服务力度,同时对两个平台的最优定价进行了比较分析,总结了买方效用系数以及增值服务边际投资成本与最优决策之间的关系,希望给平台在不同竞争环境下以管理启示。
本文考虑了同一市场上存在两个相互竞争的差异化双边平台,在一次交易中二者均为买方单归属卖方多归属,且同时为买方提供免费增值服务。其中假设买方单归属卖方多归属首先是基于前文所述平台发展成熟中后期时的客观现象,其次是因为在一次交易中,同一买方可以注册多个平台的账户,但只能选择一个平台进行交易,而对于卖方用户群来说,有的卖方只入驻一个平台,有的则同时入驻不同平台,在一次交易中不同的买方用户可能会选择不同平台上的同一卖方用户。根据Hotelling模型,构建一个完全信息博弈模型,在此假设买方与卖方只进行一次单位商品的交易,平台、买方与卖方之间的博弈顺序为:首先平台i、j同时决策向买方和卖方的定价以及增值服务力度;然后买方和卖方同时决定是否加入平台以及选择加入哪一个平台。不失一般性,假设双边平台i、j分别位于长度为1 的线性线段最左和最右端,两平台之间的距离表示包括产品种类、品牌规模等方面在内的平台差异化,平台两边的用户用k=1、2 表示,其中1、2 分别代表买方、卖方。两边用户规模均标准化为1,且在长度为1 的线性线段上服从均匀分布[18]。平台为买方免费提供的增值服务力度分别为xi、xj,xi、xj∈[0,1]。下面将文中用到的参数含义总结如表1 所示。
表1 参数说明
基于Hotelling 模型,假设买方位于长度为1 的线性线段的l 处,则买方对平台i、j 的偏好程度分别为l、1-l,且l 在长度为1 的线性线段上服从均匀分布,则在线性线段上位于l 处的买方选择平台i、j 的效用函数分别为
和买方效用函数相同,根据Hotelling 模型,位置s 处的卖方加入平台i、j 的效用函数分别为
平台的收入包括平台双边用户收取的费用,参考文献Dou 等[16],假设平台的固定成本为0,此假设不会对结论产生影响,同时平台在提供增值服务时会产生一定的成本,参考文献Dou 和He[17],用增值服务力度二次方的形式表示单位增值服务产生的成本,所以平台i、j 的增值服务成本分别为,其中c、e 分别表示平台i、j 的增值服务边际投资成本系数,以下简称边际投资成本系数,则二者的利润函数分别为
首先为了更好地表述与理解,对文中常用表达式进行了简化处理,特此说明相关符号的意义
下面分析市场处于均衡状态时的平台双边用户需求,然后根据利润最大化求解最优解,最后分析在不同情况下最优决策的相关变化。为了得到达到均衡状态时的用户需求,首先要计算出买方用户效用无差异点,在此位置上买方加入两个平台中的其中任何一个平台将会获得同等的效用,令即为买方效用无差异点,容易得到则位于左侧的买方将选择在平台i 上进行消费,位于右侧的买方将选择在平台j 上进行消费,进而得到平台i、j 的买方用户需求分别为
同理,对于可以同时加入两个平台的卖方而言,加入平台i 和同时加入两个平台的效用无差异点为,加入平台j 和同时加入两个平台的效用无差异点为,平台i、j 的卖方一方的需求为
将(3)、(4)、(5)、(6)式分别代入(1)、(2)式,求出其Hesse 矩阵,在Hesse 矩阵负定时平台i、j 的利润函数有最大值,则平台i、j 的利润函数有最优解的条件分别为在此条件下,根据平台i、j 利润函数对用户的定价和增值服务力度的一阶导数为零,联立求解易得出平台在利润最大化时的买方定价、卖方定价以及最优增值服务力度,如引理1 所示。
引理1平台i、j 的最优买方定价、最优卖方定价以及最优增值服务力度分别为
将上述最优值分别代入平台i、j 的利润函数中可得到两平台的最大利润为
引理1 给出了平台i、j 的最优定价与增值服务策略,平台在竞争环境下的最优定价与交叉网络外部性相关,Armstrong[1]结论亦如此,此外与增值服务边际投资成本、买方效用系数也紧密相关。下文将根据引理1 在卖方部分多归属情况下对最优定价与增值服务力度策略做进一步的分析与讨论,以期为竞争性双边平台在卖方部分多归属的情况下进行价格和增值服务决策时提供一定的管理启示。
以往有关平台定价正负性的研究表明,对用户收费还是补贴主要取决于交叉网络外部性,除此之外,本文结果表明与增值服务效用系数和边际投资成本也有关,详见性质1 和性质2。
性质1参考文献王春苹等[21],假设平台i、j的增值服务边际投资成本对称相等,即c=e,当时,若N≤c≤M,则,若c≥M,则;当时,若c≥N,则
性质1 表明:竞争性的两个平台在卖方用户部分多归属的情况下,平台j、i 的效用系数比值较小边际投资成本较大时,平台i、j 会同时制定正的最优买方定价;在平台j、i 的效用系数比值较大时,如果增值服务边际投资成本较小,平台i、j 都会制定负的最优买方定价,如果增值服务边际投资成本较大,平台i、j 都会制定正的最优买方定价,即平台向买方收费还是补贴取决于平台i、j 的买方效用系数相对大小和边际投资成本,且平台i、j 会同步向买方收费或者补贴。性质1 的管理启示:存在竞争和卖方部分多归属的情况下,平台不能仅仅依据交叉网络外部性决定对买方进行补贴还是收费,还要考虑竞争对手的买方增值服务效用系数以及增值服务的边际投资成本的相对大小。性质1 也表明平台在增值服务边际投资成本较大的情况下会对买方用户收取费用,这是因为此时平台需要向买方收费平衡高成本的增值服务投资,也暗含着随着双边平台的发展买方总会为服务内容付费的趋势,比如一些视频网站平台已经开始向买方收取费用。
性质2延续性质1 的假设,表2 总结了在不同条件下平台i、j 向卖方收费还是补贴。
性质2 表明:当平台j、i 效用系数比值较小时,如果增值服务边际投资成本不是很大,平台i、j会补贴卖方,如果增值服务边际投资成本较大,平台i、j 会向卖方收费;当平台j、i 效用系数比值较大时,如果增值服务边际投资成本较小,平台i、j会向卖方收费,如果增值服务边际投资成本较大,平台i、j 会补贴卖方,如果增值服务边际投资成本很大,平台i、j 转而又会向卖方收费;当平台j、i 效用系数比值很大时,随着增值服务边际投资成本的增大,平台i、j 先向卖方收取费用,之后随着增值服务边际投资成本的变大,平台对卖方进行补贴,再随着边际投资成本的增大,平台又转向收取费用。从性质2 可以看出,平台向卖方收费还是补贴同样取决于平台i、j 的买方效用系数相对大小和边际投资成本,且平台i、j 会同时向卖方收费或者补贴。性质2 的管理启示是:卖方用户的部分多归属无疑加剧了双边平台之间的竞争,因此平台不能一味地向卖方用户收取费用,要在综合考虑增值服务效用系数和边际投资成本相对大小的基础上制定最优的卖方用户的定价。
表2 卖方定价正负分析
性质1 和性质2 表明不同条件下平台i、j 向双方用户既有可能收费也有可能补贴,平台i、j 的买方效用系数的相对大小以及增值服务边际投资成本在其中起着决定性的作用,且在竞争环境下,由于现在信息技术的发展使得两个平台所拥有的信息越来越透明化,因此两个平台总是会同时向双方用户收费或者补贴,正如实际情况淘宝网和京东商城会在“618”大促、“双十一”等节日期间同时对买方进行一定的补贴,但其补贴力度则有所不同,而补贴力度的大小则会成为买方选择平台的关键因素。因此性质3 和性质4 分析了在不同条件下平台i、j 向用户定价的相对大小。
性质3表3 总结了在不同条件下平台i、j 的买方定价的相对大小。
表3 不同平台的买方定价的相对大小
性质3 表明:当平台j、i 效用系数比值较小时,平台j 的买方定价大于平台i;当平台j、i 效用系数比值较大时,如果增值服务边际投资成本较小,平台j 的买方定价大于平台i,如果增值服务边际投资成本较大,平台j 的买方定价小于平台i;当平台j、i 效用系数比值很大时,如果增值服务边际投资成本较小,平台j 的买方定价小于平台i,如果增值服务边际投资成本较大,平台j 的买方定价大于平台i。从性质3 可以看出平台i、j 的买方定价的相对大小同样是受到两个平台的买方效用系数的相对大小以及增值服务边际投资成本的影响,在不同条件下,并不是某个平台的买方定价一直处于相对较小的优势状态,而是两平台的买方定价相对大小会有所变化、此起彼伏。性质3 的管理启示是:对于理智的消费者而言,总会选择给自身带来效用较大的平台,因此平台可以依据不同时期的定价相对大小,对自身的增值服务水平进行相应的调整,以吸引更多的买方。
性质4表4 总结了在不同条件下平台i、j 的卖方定价的相对大小。
表4 不同平台的卖方定价的相对大小
性质4 表明:不同于买方用户定价的相对大小,平台i、j 的卖方定价相对大小除了受效用系数、边际投资成本的影响之外,还和交叉网络外部性有关,在三者相对大小不同的情况下,两平台的卖方定价相对大小也不同。交叉网络外部性影响平台的卖方定价的相对大小而不影响买方用户定价的相对大小,此点在一定程度上说明交叉网络外部性对卖方的影响程度要大于对买方的影响程度,也就是说卖方用户加入平台获得的效用大小更依赖于交叉网络外部性。正如实际案例中,平台总是先用补贴买方或者提供其他增值服务吸引更多的买方用户,然后由于交叉网络外部性的作用买方用户的增加则会吸引更多卖方用户。性质4 的管理启示是:平台可以在用大数据技术对交叉网络外部性进行一定了解的基础上制定卖方定价,进而在竞争中获取一定的优势。
性质5平台i、j 的最优利润比较:当时,Πi>Πj;当时,Πi<Πj。
性质5 表明:投资增值服务的相互竞争的两个平台,若平台的单位增值服务带给买方更多效用,相应的平台也会获得更多的利润。性质5 的管理启示是:竞争性的平台在卖方用户部分多归属的条件下,买方增值服务效用系数的相对大小成为获取较多利润的关键,因此平台要对消费者增值服务种类进行细分,对效用系数较高的进行投资。
性质6表5 总结了平台最优卖方定价随着边际投资成本和效用系数的变化情况。
性质6 表明:当卖方交叉网络外部性大于买方时,如果对方平台的边际投资成本较小,平台的卖方最优定价与自身边际投资成本、对方的买方效用系数正相关,与对方平台的边际投资成本、自身的买方效用系数负相关,如果对方平台的边际投资成本较大,则卖方最优定价与自身边际投资成本、对方效用系数负相关,与对方平台的边际投资成本、自身效用系数正相关;反之,卖方最优定价在相应的边际成本取值范围内与上述相反。对此可做如下解释,以卖方交叉网络外部性大于买方且对方边际投资成本较小时为例,此时对方平台会实施较强的增值服务力度以获得更多的买方,而另一方平台为了保证一定的利润,向卖方收取的费用会随着边际投资成本的增大而增大。
表5 卖方收费策略的相关变化
性质7表6 总结了最优买方收费策略与自身以及对方边际投资成本和买方效用系数的关系。
表6 买方收费策略的相关变化
性质7 表明:买方最优定价与交叉网络外部性无关,当对方平台的边际投资成本较小时,平台的买方最优定价与自身的边际投资成本、对方的买方效用系数正相关,与自身的买方效用系数、对方的边际投资成本负相关;反之则相反。对此可做如下解释,以对方边际投资成本较小时为例,此时对方平台会实施较强的增值服务力度以获得更多的买方,而另一方平台为了保证一定的利润,向买方收取的定价会随着边际投资成本的增大而增大,但同时为了与对方平台竞争,留住和吸引更多的买方,当单位增值服务给买方带来的效用越大,反而向买方收取的费用越低。
从性质6 和性质7 可以看出,卖方收费策略的敏感性分析结果受到了交叉网络外部性的影响,在交叉网络外部性相对大小不同的情况下,其敏感性分析结果不同,而买方收费策略的敏感性分析结果不受交叉网络外部性的影响,此处再次佐证了性质3 和性质4 对比得到的结论,交叉网络外部性对卖方的影响要大于对买方的影响,也就是说交叉网络外部性会给双方都带来一定的效用,庞大的卖方数量有利于提高产品的丰富度、增加买方的可选择性,而买方数量的增加有利于卖方利润的提高,但相比之下,卖方从交叉网络外部性中获得的收益更大,因此平台在制定卖方收费策略时要更多地考虑交叉网络外部性的相对大小。
性质8表7 总结了最优增值服务力度随着增值服务边际投资成本的变化情况。
从表7 最后一行可以看出:平台的最优增值服务力度与自身的边际投资成本负相关,从表7 第二行至第四行可以看出:当自身边际投资成本较小时,平台的最优增值服务力度与对方的边际投资成本负相关,与对方的买方效用系数正相关;反之则相反。当对方边际投资成本较小时,平台的最优增值服务力度与自身的买方效用系数负相关;反之则相反。性质8 表明,竞争环境下最优增值服努力度随着主要参数的相关变化不受交叉网络外部性的影响,当自身边际投资成本较小时,对方边际投资成本越小,则对方的增值服务力度就越大,由于二者之间的竞争关系,自身平台则会以增大增值服务力度作为回应。有趣的是,平台的增值服务力度并不是总随着自身的买方效用系数的增大而增大,而是当对方边际投资成本较小时,增值服务力度反而随着自身买方效用系数的增大而减小,对此可做如下解释:当对方边际投资成本较小时,可以低成本投资较大力度的增值服务进而获得较大的收益,此时自身的买方效用系数虽然提高了,但因自身的买方效用系数提高而增大增值服务力度带来的优势远不如对方的低成本优势,因此平台选择节约成本降低增值服务力度。
表7 增值服务力度策略
本文运用Hotelling 模型构建了一个完全信息博弈模型,刻画了买方单归属卖方多归属且同时投资买方增值服务的差异化双寡头双边平台,在综合考虑归属性、交叉网络外部性、增值服务力度的基础上,得到市场均衡时最优定价与增值服务力度,探讨竞争性双边平台在不同市场参数下的最优定价以及增值服务力度,主要结论有:(1)平台在竞争环境下的最优决策与交叉网络外部性、增值服务边际投资成本、买方效用系数紧密相关。(2)两平台的买方效用系数相对大小以及边际投资成本决定着平台向双方用户收费还是补贴以及两平台定价的相对大小,两平台总会同时向用户收费或者补贴,卖方用户定价的相对大小受到交叉网络外部性的影响,买方则不受其影响。(3)最优增值服务力度随着自身边际投资成本的增大而减小,受对方边际投资成本的影响,其并不总随着自身买方效用系数的增大而增大,且买方效用系数大的平台将会获得更多的利润。
得到的管理启示和相关建议有:(1)随着平台的发展,越来越多的平台开始采用会员模式向用户收费,而本文研究表明在平台用户服务效用系数比值较大且边际投资成本较大时或者比值较小且边际投资成本较大时,平台应向用户收费。(2)相较于买方而言,平台有关卖方的决策会受到买、卖双方交叉网络外部性相对大小的影响,因此平台可以利用大数据技术在掌握交叉网络外部性特征的情况下制定卖方定价,以此来缓解卖方多归属带来的竞争加剧。(3)买方增值服务效用系数是平台投资买方增值服务获取更多利润的关键所在,平台在投资之前应该详细了解不同消费者群体的特征以及不同种类的增值服务给消费者带来的效用大小。(4)在自身边际投资成本较小时平台可以制定较高的增值服务水平,但自身买方用户效用系数越大时制定越高的增值服务水平并不一定对平台有利,当对方的边际投资成本较低具有成本优势时仍然制定高的增值服务水平则对自身平台不利。
本文在构建模型时做了一些假设:(1)假设竞争平台的交叉网络外部性系数相同,且忽略了组内交叉网络外部性。(2)假设平台双边用户只做一次单位商品交易,没有考虑买方重复购买时多归属的情况,未来可对上述假设做进一步的扩展研究。