郭冶 卢凤美 刘东璞
摘要:《黄帝内经》里记载“肝者,将军之官,谋虑出焉”,可见肝脏是维持生命活动重要的器官,一旦因炎症、病毒、寄生虫等发生疾病,纤维化是肝损伤发展为肝硬化的必经阶段。肝纤维化是指各种病因引起的肝细胞发生炎症及坏死等变化,进而刺激肝脏中细胞外基质的合成与降解平衡失调,致纤维胶原生成及溶解减少,发生可逆性动态病理过程。大黄酸具有抗氧化应激与炎症、抗细胞凋亡、抗纤维化、调节糖脂代谢及抗癌等作用,尤其抗肝纤维化作用的研究受到越来越多学者的关注。研究表明,给予大黄酸预防或治疗,可抑制肌成纤维细胞增生及纤维胶原转运与合成,加速胶原溶解,减少胶原的形成与沉积,可逆转肝纤维化。本文就肝纤维化的发病机制及大黄酸抗肝纤维化的功效作一综述,以期为临床治疗提供参考。
关键词:肝纤维化;大黄酸;肝损伤
Abstract:It is recorded in Huangdi's internal classic that "the liver is the official of the general, and how to plan". It can be seen that the liver is an important organ to maintain life activities. Once diseases occur due to inflammation, viruses, parasites, etc., fibrosis is the necessary stage for liver damage to develop into cirrhosis. Hepatic fibrosis refers to the reversible dynamic pathological process, which is caused by inflammation and necrosis of liver cells caused by various causes, and then stimulates the imbalance of synthesis and degradation of extracellular matrix in liver, resulting in the decrease of generation and dissolution of fibrocollagen. Rhein has the functions of anti oxidative stress and inflammation, anti apoptosis, anti fibrosis, regulation of glycolipid metabolism and anti-cancer. Especially, more and more scholars have paid attention to the research of anti fibrosis. The prevention or treatment of rhein can inhibit the proliferation of myofibroblasts and the transport and synthesis of fibrocollagen, accelerate the dissolution of collagen, reduce the formation and deposition of collagen, and reverse it hepatic fibrosis. This article reviews the pathogenesis of hepatic fibrosis and the effect of rhein on hepatic fibrosis.
Key words:Hepatic fibrosis;Rhein;Liver damage
肝臟是人体内最大的实质性器官,其功能较为复杂,包括代谢、合成、生物转化、分泌、排泄胆汁等,各种外源性和内在的因素,都可以导致肝脏疾病。常见的肝脏疾病包括肝炎、肝硬化、肝癌等,是导致人们健康负担的重要原因,同时也加重社会经济成本。据报道[1],全球肝硬化患者死亡人数截止到2013年约122.1万。肝纤维化(hepatic fibrosis)是肝脏疾病发生、发展的中间环节,通过调节肝脏中细胞外基质(extracellular matrix,ECM)合成与降解的平衡,去除病因,给予适当干预,可治疗并逆转肝纤维化。随着人类对疾病的认识与研究,越来越多的药物被开发利用,尤其我国重视对中医药的开发,对延缓或治愈疾病,改善患者生活质量具有重要意义。天然蒽醌类化合物大黄的主要有效成分大黄酸自我国古代以来就作为泻下药应用,南北朝医家陶弘景有云“大黄,其色也。将军之号,当取其骏快也”。现代药理研究表明[2,3],大黄酸具有广泛的药理活性,包括抗炎、抗氧化应激、抗肿瘤、抗纤维化、调脂、降糖、抑菌、抗病毒等作用,其中大黄酸对抗纤维化作用受到临床广泛关注。基于此,本文就肝纤维化的发病机制及大黄酸预防或治疗肝纤维化的功效作一综述。
1肝纤维化的发病机制
1.1肝纤维化概述 肝纤维化是各种慢性肝炎、肝癌等肝病发展的一个典型组织病理学特征[4],持续性肝脏炎症、酒精等破坏受趋化因子及其信号转导途径作用于肝细胞、肝星状细胞(hepatic stellate cells,HSCs)、门静脉成纤维细胞(portalfibroblast,PF)等,主要受活化的肝星状细胞(activated HSCs,aHSCs)刺激分化,大量细胞因子被激活,合成并增殖大量ECM,从而形成了肝纤维化进展的重要因素。在肝纤维化早期阶段,胶原沉积在窦周间隙(Disse间隙)内皮下,可使间隙变小甚至完全消失,进而肝窦毛细血管化,肝细胞间的物质运输受阻,终因缺血缺氧、变性坏死,导致功能障碍[5];在肝纤维化晚期阶段,肝脏内纤维胶原组织广泛增生和异常沉积,主要分布在门管区和肝小叶内,生成假小叶及结节,即持续纤维化形成肝硬化,门静脉高压,严重者甚至发展为肝功能衰竭、肝细胞癌[6,7],唯一的根治途径仍是去除有害刺激和肝移植[8]。
截止到目前,即使临床上广泛应用非侵入性检测方法,但活检仍然是诊断肝纤维化分期的金标准[9]。早发现、去除病因、给予适当干预、通过抑制HSC的增值活性和多种信号通路间串扰的综合调节及协调肝脏中ECM合成与降解的失衡、靶向阻断结合纳米颗粒治疗、TIMP-1-shRNA的干细胞移植技术、Smad3蛋白可能是抗肝纤维化的潜在靶标[10]。研究表明[11],在细胞和基因水平上阻断基质金属蛋白酶-13(MMP-13)和结缔组织生长因子(connective tissue growth factor,CTGF)对抑制肝纤维化具有潜在的治疗意义。深入研究逆转肝纤维化的有效途径,仍是人类追求肝脏健康的有用价值取向。
1.2参与肝纤维化的细胞因子
1.2.1 aHSCs 正常人体内,肝脏中星状细胞的特征与肺、肾、胰腺等其他纤维化器官中的特征类似[12]。HSCs是静止的储脂细胞,可通过脂滴中维生素A的量检测HSCs的表达情况[13,14],一旦肝组织受损或发生炎症反应,星状细胞内脂滴丢失,大量炎细胞趋化聚集,刺激并激活静止的肝星状细胞(quiescent HSCs,qHSCs),aHSCs转化成可以释放大量α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)的肌成纤维细胞(myofibroblast,MFB)即成纤维样细胞,含纤维胶原蛋白的ECM沉积失调,并伴随着炎症介质的作用,与此同时aHSCs激活并释放大量细胞因子和基质金属蛋白酶/金属蛋白酶组织抑制剂(matrix metalloproteinases,MMPs)/(tissue inhibitor of metalloproteinases,TIMPs),其中大量活化的TIMP,抑制MMP降解ECM,促肝纤维化形成[15,16]。可见在肝纤维化过程中,HSCs起着重要调控作用。
1.2.2转化生长因子β(TGF-β) TGF-β被认为是肝脏疾病中的中枢调节因子,作为多肽超家族,有3个同种型(TGF-β1,TGF-β2和TGF-β3)与纤维化有关[17],其中TGF-β1与肝纤维化关系最密切,其通过激活HSCs的活化与增殖,并被证实为活性氧(ROS)和ECM产生的主要细胞因子[18]。CTGF在TGF-β1的调节下,参与细胞增殖和组织重塑,并刺激自身的表达。干扰素-γ(IFN-γ)、肿瘤坏死因子-α(TNF-α)和表皮生长因子(EGF)能通过刺激Smad7蛋白的表达抑制TGF-β/Smad传导通路的活性,从而抑制HF的进展[19]。TGF-β、PDGF、白细胞介素-1β(IL-1β)、IL-17及肠源性脂多糖(LPS)促HSC活化,活化的HSC释放IL-1β或TNF-α,并介导MMP/TIMP失衡[20]。有研究表明[21,22],在四氯化碳复制的肝纤维化大鼠中,IL-1β通过自分泌或旁分泌诱导产生趋化因子或细胞因子,使得TNF-α和IL-6的含量显著升高。因此,肝损伤后发生肝纤维化,其与细胞因子间有着密切关联。
1.2.3甲胎蛋白(α-FetoProtein,αFP) αFP是一种糖蛋白质,主要来自胎儿期的肝脏,为生理产物。在孕其3个月时开始合成,5~6个月时达到高峰,随后降到极微。αFP正常检测时值应在20 ng/ml以内,如超出正常值,则提示机体异常。肝细胞癌的在临床检测中主要指标为αFP,其中Hep3B单核培养物可分泌高水平的αFP,但是人HSCs与Hep3B细胞共培养后,αFP显著降低,且细胞凋亡明显增加。Muhanna N等[23]通过体内外实验证明,在肝纤维化早期,aHSCs通过氧化应激介导的肿瘤细胞吞噬和凋亡,直接表达抗肿瘤作用。另有研究表明[24,25],在肝纤维化晚期,肝硬化患者肠道过度生长的菌群和门静脉内毒素的内源性传感器TLR4可能共同促进肝纤维化进展。反应性氧化剂物质(如酒精、病毒、铁或铜过载、胆汁淤积等)通过氧化应激反应,可能有助于肝纤维化的发作和进展[26]。促纤维化的细胞因子发生衰老、凋亡或自噬可能是逆转纤维化的关键因素[11,27],如肝纤维化的逆转与肝星状细胞的凋亡有关[28]。Hong F等[29]成功的建立并验证了索拉菲尼在培养的人HSC和硫代乙酰胺(TAA)诱导的大鼠肝纤维化中的抑制作用,及抗肝纤维化的最小有效剂量和最佳治疗时间,充分说明肝纤维化是一种可逆的伤口愈合反应。大量研究显示,通过实验检测αFP、α-SMA、CTGF、MMPs及胶原等因子的表达[30-32],可用于验证某种药物干预抑制和减少肝细胞凋亡及肝星状细胞活化来逆转肝纤维化,从而延缓肝病进展[33-34]。在肝损伤时,多种细胞因子串扰作用发生存活和失活,直接或间接影响肝纤维化发展。
1.2.4 α-平滑肌肌动蛋白(α-SMA) 研究表明[35-37],肌动蛋白(actin)是组成含大量微丝的细胞骨架的主要成分,生物体内有6种肌动蛋白异构体,α型肌动蛋白是按等电点聚焦电泳不同分出的3种类型之一,进一步可分为心肌型、骨骼肌型和平滑肌型。在正常生理状态下,α-SMA表达主要见于成人平滑肌源型的细胞,其次在心肌和骨骼肌发育过程中呈现短暂表达,具有收缩和形成细胞骨架的作用。在病理过程中,α-SMA是HSCs活化的标志物,血小板衍生生长因子-D(PDGF-D)未能激活并促进α-SMA的增生,能促进TIMP-1的表达,增强肝纤维化进展[38]。
1972年Gabbiani G等[39]首次通过离体肉芽组织验证了成纤维细胞分化为一种结构和功能类似于平滑肌细胞类型,而又非平滑肌细胞的细胞结构,这种细胞结构在结缔组织收缩中起重要作用,并提出将其命名为“myo-fibroblast”,译为“肌成纤维细胞”,简称MFB。MFB不存在正常组织中,其来源取决于损伤的组织和特定损伤组织的类型,如肝、肾、肺、心等器官能够退化高度重塑的组织成分[40];在发生损伤炎症等病理情况下,高度动态的成纤维细胞转化为活化的α-SMA阳性表达的MFB[41]。对于不同纤维化疾病,肌成纤维细胞的来源目前尚不确定[42,43],通常皮肤成纤维细胞是固着静止的,但皮肤损伤后被激活,活化的成纤维细胞迁移合成肉芽组织,同时分化为表达α-SMA的MFB,皮肤损伤后同时被激活的细胞因子如TGF-β促进PFs向MFB分化,再从肉芽组织到真皮(或疤痕)的转变,即纤维性瘢痕的细胞外基质,之后细胞增殖和生物合成活性的变化,可能是MFB在伤口愈合结束时消失的发展机制[44];在心肌纤维化时,肌成纤维细胞主要来自因心肌广泛受损激活的成年哺乳动物心脏中最为丰富的成纤维细胞[45,46];Shao S等[47]研究表明,基质细胞衍生因子-1(SDF-1)和Wnt信号通路在高血压大鼠心肌纤维化实验中,通过体外诱导骨髓间充质干细胞分化肌成纤维细胞(MFs);陈威等[48]研究表明,肾小管-间质细胞α-SMA的表达与肾间质纤维化程度呈正相关。TGF-β/Smad信号通路介导脱氢表雄酮(dehydroepiandrosterone,DHEA)诱导α-SMA高表达的多囊卵巢综合征(polycystic ovary syndrome,PCOS),从抑制TGF-β下游信号因子来上调MMP2表达,从平衡纤维化生物标志物表达的角度来对抗卵巢纤维化并抑制纤维化过度产生,从而防治PCOS[49,50];肝脏纤维化时肌成纤维细胞主要来源于肝内活化的肝星状细胞、活化的门静脉成纤维细胞和间皮细胞[41];促炎症和促纤维化细胞因子的减少,以及促α-SMA和I型胶原活化的肌成纤维细胞衰老及凋亡,活化的部分肝星狀细胞逆转为静止样肝星状细胞表型[51]。由此可见,肝纤维化受细胞因子的双向调节,影响着自身的发展趋势。
1.3肝纤维化与MMPs/TIMPs MMPs是金属离子钙镁锌依赖性肽链内切酶家族,几乎在肝纤维化、纤维蛋白溶解、肝细胞癌及肝再生中各自发挥着重要作用。通常裂解ECM的是锌依赖性内切酶,至少包括28个成员,其家族成员具有相似的分子结构,主要裂解ECM,不同MMP可有不同裂解ECM的效率,同种MMP可裂解多种ECM成分,而其一种ECM成分又可被多种MMP裂解,除此之外还可激活其他MMPs类,也有学者称其为蛋白水解酶家族[52]。MMPs按底物不同分为:①胶原酶(collagenases):包括间质胶原酶(MMP-1、-8)和胶原酶3(MMP-13),MMP13是啮齿动物主要的纤维胶原降解酶[53];②明胶酶(gelatinases):包括明胶酶A(MMP-2)和明胶酶B(MMP-9),主要是Ⅳ型胶原酶的2种变现形式;③间质溶解素(stromelysins):MMP-3、-7、-10、-11,其中MMP-7在肾纤维化的发病机制中起重要作用[54],MMP-3存在于肝脏中,但动态变化尚不清楚;④模型基质金属蛋白酶(membrane-type MMPs):MMP-14、-15、-16、-17、-24、-25,可促进胶原酶A的激活,并降解间质胶原蛋白;⑤金属弹性蛋白酶(metalloelastase):MMP-12,其来源于巨噬细胞,可降解ECM中弹性蛋白酶和纤连蛋白等[55];⑥基质溶素(matrilysins);⑦釉质溶解素(enamelysin)等,其中正常肝脏中MMPs含量少,多表达MMP-1、-2、-3、-11、-13组成型[56]。Chan MF等[57]研究表明,MMP12通过对炎症和血管生成的影响来预防损伤后的角膜纤维化。Vincenti MP等[58]研究发现,兔具有与人胶原酶MMP-1和MMP-13同源的不同基因,而小鼠和大鼠表现出有MMP-13的同源物。MMP-13主要来源于瘢痕相关巨噬细胞(scar-associated macrophages,SAMs),肝巨噬细胞通过产生趋化因子CXCL9和MMP-13,从而促进纤维化消退[59]。Fallowfield JA等[60]在慢性CCl4致肝纤维化模型中消耗SAMs,导致MMP-13的表达减少5倍,而在MMP-13基因敲除的小鼠中纤维化的逆转被延迟。可见在肝纤维化过程中,MMPs的表达差异具有研究意义。
TIMPs家族是一个多基因编码的蛋白群,作为MMPs的特异性抑制剂,可以抑制MMPs在ECM合成过程中的拮抗作用,使MMPs被激活受到阻碍并使其活性受限而降低[61]。目前普遍认为TIMPs和MMPs合成和分泌来自相同的细胞因子,主要来自于HSC、kupffer细胞、MFB,TIMPs主要由TIMP-1、-2、-3、-4组成,均可与MMPs成员以1∶1的比例结合来抑制MMPs的活性[62];也有证据表明[63],TIMPs可能具有与MMPs无关的其他活性作用。总之,除TIMPs其他作用潜力有待深入研究外,还应深入研究它的活化表型加速肝纤维化作用。
此外,在生理条件下,Disse间隙中ECM合成与降解的稳态受MMPs/TIMPs之间的平衡协调,MMPs的活性受TIMPs的控制,TIMP-1的含量与肝纤维化程度呈平行关系,活化的HSCs增加TIMP-1的表达。TIMP-1本身可能不会引起肝纤维化,一旦MMPs/TIMPs失衡,ECM异常沉积和降解减少,可加重HF[56]。Robert S等[21]研究证实,松弛素(RLN)能使MMPs(MMP-1,-3,-8,-9和-13)的表达增加,TIMPs(TIMP-1和-4)的表达降低,并通过降低纤维连接蛋白(FN)、α-SMA和Smad2磷酸化的表达来抑制ECM的过度合成,从而抑制纤维化形成。Liang J等[64]研究表明,药物可控制TIMP2的表达来减少肝实质内ECM沉积,从而减轻了肝纤维化。为此遵从“未病先防,既病防变”原则,从最开始肝纤维化着手预防和治疗,延缓或治愈肝脏疾病,才是健康的基石。
2大黄酸与肝纤维化的关系
2.1大黄酸的药理机制 大黄酸(rhein,4,5-二羟基-2-羧基蒽醌)是分布在蓼科植物中的单蒽核类物质[65],主要在古老中药大黄内提取,也存在何首乌、虎杖、芦荟等中药中[66]。近年来研究发现[67,68],大黄酸具有抗氧化应激与炎症、抗细胞凋亡、抗纤维化、调节糖脂代谢及抗癌等作用,其临床益处可能增强更多的潜在机制,尤其大黄酸抗纤维化作用更为实用。Huang CH等[69]研究表明,大黄酸诱导小鼠囊胚氧化应激和凋亡,在胚胎发育过程中具有免疫毒性作用。Mao Y等[70]研究发现,大黄酸能够通过肾小管上皮细胞(HK-2细胞)中的ROS依赖性线粒体途径诱导细胞凋亡,通过线粒体解偶联蛋白2(UCP2)抑制促氧化应激并加剧其诱导的HK-2细胞凋亡。Ge H等[71]通过转基因斑马鱼体内外研究发现,大黄酸抑制NF-κB和NALP3炎性体的表达来减轻溃疡性结肠炎的炎症反应。此外,大黄酸可诱导肝癌细胞HepG2和宫颈癌细胞Hela中β-连环蛋白(β-catenin)的降解并抑制肿瘤细胞的生长[72],并直接靶向脯氨酰异构酶Pin1和c-Jun之间的相互串扰,从而表现出抑制Pin1的肿瘤,促进其活性[73];同时,其还可导致细胞周期阻滞、半胱氨酸天冬氨酸蛋白酶介导细胞凋亡、胞内酸性小炮诱导细胞自噬、ERK抑制介导细胞分化。Tang N等[74]通过检测形态学特征及胶质纤维酸性蛋白(GFAP)表达的变化验证了大黄酸对大鼠F98胶质瘤细胞的抗瘤癌特性。大黄酸也有调节糖脂代谢作用,陈卫东等[75]和Wang S等[76]研究表明,增加2型糖尿病大鼠肾组织沉默接合型信息调节因子2同源蛋白1(SIRT1)mRNA及蛋白的表达,改善胰岛素抵抗和血脂紊乱,对糖尿病肾病大鼠的肾脏起保护作用,改善了慢性高脂饮食肥胖小鼠的识别记忆障碍。Zeng CC等[77]通过抑制高血糖、高脂血癥等与机体内多种分子靶标相互串扰作用,从而改善糖尿病肾病病变过程中的病理进展。
2.2大黃酸对纤维化的作用 大黄酸作为一种天然自噬调节因子,可通过调节AMPK/mTOR信号途径有效抑制肾小管细胞的自噬活性[78];通过TGF-β/Smad和Wnt/β-catenin信号通路,显著降低了肾细胞中TGF-β引起的Klotho启动子转录,从而起到抗肾纤维化作用[79]。苏健等[80]研究表明,抗纤维化因子肝细胞生长因子(hepatocyte growth factor,HGF)及骨形态发生蛋白(bone-morphorgenetic proteins,BMP7)的表达皆较模型组明显升高,移植肾组织间质纤维化减轻,证明大黄酸对慢性移植肾肾病(chronical allograft nephropathy,CAN)有治疗作用。屈艳等[81]通过大黄酸抑制miR-21及干预TGF-β1/Smad7通路的研究,证实其抗肺纤维化作用。Tsang SW等[82]在慢性胰腺炎(chronic pancreatitis,CP)小鼠模型中发现,大黄酸显著降低了与胰腺星状细胞(pancreatic stellate cells,PSCs)有关的纤维激活因子α-SMA和TGF-β;在体外培养的PSC中,大黄酸显著抑制TGF-β刺激的成纤维标志物α-SMA、纤维连接蛋白1(fibronectin 1,FN1)、Ⅰ型胶原蛋白α1(type I collagen,COL I-α1)的表达,抑制SHH/GLI1信号传导,进而证明大黄酸有很强的抗胰腺纤维化作用。Guo MZ等[83]通过四氯化碳造模大鼠肝纤维化进一步检测TGF-β1和a-SMA的表达,给予大黄酸大、小剂量,从大黄酸抗炎、抗氧化及抑制肝星状细胞的活化,抑制TGF-β1作用等可能相关角度考虑,从而验证大黄酸抗肝纤维化作用。卢凤美等[84]从MMP-13及α-SMA表达量的角度实验显示,中药大黄酸联合红景天可抑制肝纤维化进展。近年来随着中草药成分作为“补充和替代医疗(complementary and alternative medicine,CAM)”里新型生物活性物质的主要来源[85],大黄酸作为特性中药成分,及早干预肝纤维化是有效的,对慢性肝病进展有举足轻重的理论与实践意义。
3总结
肝纤维化逆转机制的研究正在不断进展,为寻求更多的干预途径,针对特异性生物因子的表达和多种信号通路间串扰的调节,其发病机制及治疗靶点为目前国内外研究现状。而纤维化作为器官损伤和衰竭的共同途径,不仅肝纤维化,还包括心肌、肾、肺、胰腺、肠等纤维化,对机体器官正常运行都具有举足轻重的作用。随着现代社会中医药的不断发展研究,截至到目前,大黄酸是大黄有效成分中抗氧化应激、清除超氧阴离子自由基能力最强的,也是多脏器纤维化治疗的选用药物之一。随着大黄酸的应用越来越广泛,肝脏可能成为大黄酸抗纤维化作用的再一个靶标。
参考文献:
[1]Naghavi M,Wang H,Lozano R.Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013:a systematic analysis for the global burden of disease study 2013[J].Lancet,2015,385(9963):117-171.
[2]Hao K,Qi Q,Wan P,et al.Prediction of human pharmacokinetics from preclinical information of rhein,an antidiabetic nephropathy drug,using a physiologically based pharmacokinetic model[J].Basic & Clinical Pharmacology & Toxicology,2014,114(2):160-167.
[3]Zhu W,Wang XM,Zhang L,et al.Pharmacokinetic of Rhein in healthy male volunteers following oral and retention enema administration of rhubarb extract: a single dose study[J].Am J Chin Med,2005,33(6):839-850.
[4]Mormone E,George J,Nieto N.Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches[J].Chem Biol Interact,2011,193(3):225-231.
[5]Bottcher K,Pinzani M.Pathophysiology of liver fibrosis and the methodological barriers to the development of anti-fibrogenic agents[J].Adv Drug Deliv Rev,2017(121):3-8.
[6]Marra F,Tacke F.Roles for Chemokines in Liver Disease[J].Gastroenterology,2014,147(3):577-594.
[7]Peri K.Cellular basis of hepatic fibrosis and its role in inflammation and cancer[J].Frontiers in Bioscience,2013,S5(1):217-230.
[8]Hibi T,Eguchi S,Egawa H.Evolution of living donor liver transplantation: a global perspective[J].J Hepatobiliary Pancreat Sci,2018,25(8):388-389.
[9]Li CX,Li RT,Zhang W.Progress in non-invasive detection of liver fibrosis[J].Cancer Biol Med,2018,15(2):124-136.
[10]Schon HT,Bartneck M,Borkham-Kamphorst E,et al.Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis[J].Front Pharmacol,2016(7):33.
[11]Mòdol T,Brice N,Ruizd GM,et al.Fibronectin peptides as potential regulators of hepatic fibrosis through apoptosis of hepatic stellate cells[J].Journal of Cellular Physiology,2015,230(3):546-553.
[12]Raghu G,Amatto V C,Behr,et al.Comorbidities in idiopathic pulmonary fibrosis patients:a systematic literature review[J].European Respiratory Journal,2015,46(4):1113-1130.
[13]Lin Z,Zheng L,Zhang H,et al.Anti-fibrotic effects of phenolic compounds on pancreatic stellate cells[J].BMC Complement Altern Med,2015,15(1):259.
[14]Chen Y,Mu L,Xing L,et al.Rhein alleviates renal interstitial fibrosis by inhibiting tubular cell apoptosis in rats[J].Biol Res,2019,52(1):50.
[15]George J,Tsutsumi M,Tsuchishima M.MMP-13 deletion decreases profibrogenic molecules and attenuates N -nitrosodimethylamine-induced liver injury and fibrosis in mice[J].J Cell Mol Med,2017,21(12):3821-3835.
[16]Roeb E.Matrix metalloproteinases and liver fibrosis (translational aspects)[J].Matrix Biology,2018(68-69):463-473.
[17]Xu F,Liu C,Zhou D,et al.TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis.J Histochem Cytochem,2016,64(3):157-167.
[18]Yang C,Zeisberg M,Mosterman B,et al.Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors[J].Gastroenterology,2003,124(1):147-159.
[19]Dooley S,Ten Dijke P.TGF-β in progression of liver disease[J].Cell Tissue Res,2012,347(1):245-256.
[20]Robert S,Gicquel T,Bodin A,et al.Characterization of the MMP/TIMP Imbalance and Collagen Production Induced by IL-1β or TNF-α Release from Human Hepatic Stellate Cells[J].PLoS One,2016,11(4):e0153118.
[21]Robert S,Gicquel T,Victoni T,et al.Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis[J].Biosci Rep,2016,36(4):e00360.
[22]許琼梅,李跃龙,曹后康,等.溪黄草水提物对四氯化碳诱导大鼠肝纤维化的保护作用及机制研究[J].中国药房,2018,29(20):2791-2796.
[23]Muhanna N,Doron S,Abu-Tair L,et al.Early fibrosis inhibits hepatocellular carcinoma mediated by free radical effects[J].Mitochondrion,2013,13(5):391-398.
[24]Seki E,Brenner DA.Recent advancement of molecular mechanisms of liver fibrosis[J].Journal of Hepato-Biliary-Pancreatic Sciences,2015,22(7):512-518.
[25]Schnabl B,Brenner DA.Interactions Between the Intestinal Microbiome and Liver Diseases[J].Gastroenterology,2014,146(6):1513-1524.
[26]Poli G.Pathogenesis of liver fibrosis: role of oxidative stress[J].Molecular Aspects of Medicine,2000,21(3):49-98.
[27]Frank R.Murphy,Razao Issa,Xiaoying Zhou,et al.Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition implications for reversibility of liver fibrosis[J].Journal of Biological Chemistry,2002,277(13):11069-11076.
[28]Rockey DC,Bell PD,Hill JA.Fibrosis--A common pathway to organ injury and failure[J].N Engl J Med,2015,372(12):1138-1149.
[29]Hong F,Chou H,Fiel M I,et al.Antifibrotic Activity of Sorafenib in Experimental Hepatic Fibrosis:Refinement of Inhibitory Targets,Dosing,and Window of Efficacy In Vivo[J].Digestive Diseases and Sciences,2013,58(1):257-264.
[30]Huang Y,Deng X,Liang J.Modulation of hepatic stellate cells and reversibility of hepatic fibrosis[J].Experimental Cell Research,2017,352(2):420-426.
[31]Taura K,De Minicis S,Seki E,et al.Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis[J].Gastroenterology,2008(135):1729-1738.
[32]Liu T,Wang X,Karsdal MA,et al.Molecular serum markers of liver fibrosis[J].Biomark Insights,2012(7):105-117.
[33]Kuwahata M,Kubota H,Kanouchi H,et al.Supplementation with branched-chain amino acids attenuates hepatic apoptosis in rats with chronic liver disease[J].Nutr Res,2012,32(7):522-529.
[34]Liang B,Guo X L,Jin J,et al.Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury[J].World J Gastroenterol,2015,21(17):5271-5280.
[35]Hennessey ES,Drummond DR,Sparrow JC.Molecular genetics of actin function[J].Biochemical Journal,1993,291(3):657-671.
[36]曲東明,韩梅,温进坤.肌动蛋白结合蛋白[J].细胞生物学杂志,2007(2):219-224.
[37]吴聪颖.微丝的基本性质与细胞核肌动蛋白[J].中国细胞生物学学报,2019,41(3):381-386.
[38]Borkham-kamphorst E,Alexi P,Tihaa L,et al.Platelet-derived growth factor-D modulates extracellular matrix homeostasis and remodeling through TIMP-1 induction and attenuation of MMP-2 and MMP-9 gelatinase activities[J].Biochem Biophys Res Commun,2015,457(3):307-313.
[39]Gabbiani G,Hirschel BJ,Ryan GB,et al.Granulation tissue as a contractile organ[J].Journal of Experimental Medicine,1972,135(4):719-734.
[40]Hinz B,Phan SH,Thannickal VJ,et al.Recent developments in myofibroblast biology:paradigms for connective tissue remodeling[J].American Journal of Pathology,2012,180(4):1340-1355.
[41]Kisseleva T.The origin of fibrogenic myofibroblasts in fibrotic liver[J].Hepatology,2017,65(3):1039-1043.
[42]Postlethwaite AE,Shigemitsu H,Kanangat S.Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis[J].Current Opinion in Rheumatology,2004,16(6):733-738.
[43]Pardali E,Sanchez-Duffhues G,Gomez-Puerto MC,et al.TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases[J].Int J Mol Sci,2017,18(10):2157.
[44]Grinnell F.Fibroblasts,myofibroblasts,and wound contraction[J].J Cell Biol,1994,124(4):401-404.
[45]Zhou P,Pu WT.Recounting Cardiac Cellular Composition[J].Circ Res,2016,118(3):368-370.
[46]Shinde AV,Humeres C,Frangogiannis NG.The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling[J].Biochim Biophys Acta,2017,1863(1):298-309.
[47]Shao S,Cai W,Sheng J,et al.Role of SDF-1 and Wnt signaling pathway in the myocardial fibrosis of hypertensive rats[J].American Journal of Translational Research,2015,7(8):1345-1356.
[48]陳威,杨守京,刘彦仿,等.实验性慢性肾缺血模型肾小管-间质细胞a-平滑肌肌动蛋白的表达和意义[J].肾脏病与透析肾移植杂志,2004(1):30-34.
[49]Wang D,Wang W,Qiao L,et al.DHEA-induced ovarian hyperfibrosis is mediated by TGF-β signaling pathway[J].Journal of Ovarian Research,2018,11(1):6.
[50]Zhou F,Shi LB,Zhang SY.Ovarian Fibrosis:A Phenomenon of Concern[J].Chin Med J (Engl),2017,130(3):365-371.
[51]Xiao L,Xu J,Brenner D A,et al.Reversibility of Liver Fibrosis and Inactivation of Fibrogenic Myofibroblasts[J].Current Pathobiology Reports,2013,1(3):209-214.
[52]Sergio D,John B,Takehiro F,et al.Matrix metalloproteinases in liver injury,repair and fibrosis[J].Matrix Biology,2015(44-46):147-156.
[53]Bennett RG,Heimann DG,Singh S,et al.Relaxin Decreases the Severity of Established Hepatic Fibrosis in Mice[J].Liver International,2014,34(3):416-426.
[54]Ke B,Fan C,Yang L,et al.Matrix Metalloproteinases-7 and Kidney Fibrosis[J].Front Physiol,2017(8):21.
[55]Pellicoro A,Aucott RL,Ramachandran P,et al.Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP‐12) during experimental liver fibrosis[J].Hepatology,2012,55(6):1965-1975.
[56]吴灿,黄亮,莫立乾,等.丹参多酚酸盐通过TGF-β1/Smad和PI3K/AKT/mTOR信号通路抑制大鼠肝纤维化的进展[J].中国医院药学杂志,2019,39(7):670-675.
[57]Chan MF,Li J,Bertrand A,et al.Protective effects of matrix metalloproteinase-12 following corneal injury[J].Journal of Cell Science,2013,126(17):3948-3960.
[58]Vincenti MP,Coon CI,Mengshol JA,et al.Cloning of the gene for interstitial collagenase-3 (matrix metalloproteinase-13) from rabbit synovial fibroblasts: differential expression with collagenase-1(matrix metalloproteinase-1)[J].Biochem J,1998(331):341-346.
[59]Yang L,Kwon J,Popov Y,et al.Vascular endothelial growth factor promotes fibrosis resolution and repair in mice[J].Gastroenterology,2014(146):1339-1350.
[60]Fallowfield JA,Mizuno M,Kendall TJ,et al.Scar-Associated Macrophages Are a Major Source of Hepatic Matrix Metalloproteinase-13 and Facilitate the Resolution of Murine Hepatic Fibrosis[J].The Journal of Immunology,2007,178(8):5288-5295.
[61]Zhu Y,Miao Z,Gong L,et al.Transplantation of mesenchymal stem cells expressing TIMP-1-shRNA improves hepatic fibrosis in CCl4-treated rats[J].International Journal of Clinical & Experimental Pathology,2015,8(8):8912-8920.
[62]Kang YM,Lee HM,Moon SH,et al.Relaxin Modulates the Expression of MMPs and TIMPs in Fibroblasts of Patients with Carpal Tunnel Syndrome[J].Yonsei Med J,2017,58(2):415-422.
[63]Uchinaka A,Kawaguchi N,Mori S,et al.Tissue inhibitor of metalloproteinase-1 and -3 improves cardiac function in an ischemic cardiomyopathy model rat[J].Tissue Engineering Part A,2014,20(21-22):3073-3084.
[64]Liang J,Zhang B,Shen RW,et al.Preventive effect of halofuginone on concanavalin A-induced liver fibrosis[J].PLoS One,2013,8(12):e82232.
[65]Cao YJ,Pu ZJ,Tang YP,et al.Advances in bio-active constituents,pharmacology and clinical applications of rhubarb[J].Chinese Medicine,2017,12(1):36.
[66]吳佳伟.基于肠道菌群以及肠道屏障完整性探讨大黄酸治疗结肠炎症的作用机制[D].南京中医药大学,2019.
[67]Sun H,Luo G,Chen D,et al.A Comprehensive and System Review for the Pharmacological Mechanism of Action of Rhein,an Active Anthraquinone Ingredient[J].Front Pharmacol,2016(7):247.
[68]武超,曹红燕,孙明瑜.大黄酸在肝病中的应用研究[J].辽宁中医杂志,2015,42(12):2382-2387.
[69]Huang CH,Chan WH.Rhein Induces Oxidative Stress and Apoptosis in Mouse Blastocysts and Has Immunotoxic Effects during Embryonic Development[J].Int J Mol Sci,2017,18(9):2018.
[70]Mao Y,Zhang M,Yang J,et al.The UCP2-related mitochondrial pathway participates in rhein-induced apoptosis in HK-2 cells[J].Toxicol Res (Camb),2017,6(3):297-304.
[71]Ge H,Tang H,Liang Y,et al.Rhein attenuates inflammation through inhibition of NF-κB and NALP3 inflammasome in vivo and in vitro[J].Drug Des Devel Ther,2017(11):1663-1671.
[72]Liu S,Wang J,Shao T,et al.The natural agent rhein induces β-catenin degradation and tumour growth arrest[J].J Cell Mol Med,2017,22(1):589-599.
[73]Cho JH,Chae JI,Shim JH.Rhein exhibits antitumorigenic effects by interfering with the interaction between prolyl isomerase Pin1 and c-Jun[J].Oncology Reports,2017,37(3):1865-1872.
[74]Tang N,Jian C,Lu HC,et al.Rhein induces apoptosis and autophagy in human and rat glioma cells and mediates cell differentiation by ERK inhibition[J].Microbial Pathogenesis,2017(113):168-175.
[75]陈卫东,常保超,张燕,等.大黄酸增加2型糖尿病大鼠肾组织SIRT1的表达[J].细胞与分子免疫学杂志,2015,31(5):615-619.
[76]Wang S,Huang XF,Zhang P,et al.Chronic rhein treatment improves recognition memory in high-fat diet-induced obese male mice[J].Journal of Nutritional Biochemistry,2016(36):42-50.
[77]Zeng CC,Liu X,Chen GR,et al.The molecular mechanism of rhein in diabetic nephropathy[J].Evidence-Based Complementray and Alternative Medicine,2014(2014):1-6.
[78]Tu Y,Gu L,Chen D,et al.Rhein Inhibits Autophagy in Rat Renal Tubular Cells by Regulation of AMPK/mTOR Signaling[J].Scientific Reports,2017(7):43790.
[79]Zhang Q,Yin S,Liu L,et al.Rhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice[J].Sci Rep,2016(6):34597.
[80]苏健,殷立平,张鑫,等.大黄酸对慢性移植肾肾病大鼠肾组织抗纤维化因子表达的影响[J].中国临床药理学与治疗学,2011,16(10):1114-1120.
[81]屈艳,张崇,贾岩龙,等.大黄酸通过抑制miR-21而干预TGF-β1/Smad通路并减轻博莱霉素所致大鼠肺纤维化[J].中国病理生理杂志,2017,33(1):149-153.
[82]Tsang SW,Zhang H,Lin C,et al.Rhein,a natural anthraquinone derivative,attenuates the activation of pancreatic stellate cells and ameliorates pancreatic fibrosis in mice with experimental chronic pancreatitis[J].PLoS One,2013,8(12):e82201.
[83]Guo MZ,Li XS,Xu HR,et al.Rhein inhibits liver fibrosis induced by carbon tetrachloride in rats[J].Acta Pharmacologica Sinica,2002,23(8):739-744.
[84]卢凤美,林昔,刘东璞,等.中药对大鼠肝纤维化MMP-13及α-SMA的影响[J].黑龙江医药科学,2016,39(5):46-47,49.
[85]Latief U,Ahmad R.Herbal remedies for liver fibrosis:A review on the mode of action of fifty herbs[J].Journal of Traditional & Complementary Medicine,2018,8(3):352-360.
收稿日期:2020-04-13;修回日期:2020-04-26
編辑/杜帆