彭聪斐,黄荣厦,黎家就,熊顺进,林华泰
B位Hf掺杂对0.94Bi0.5Na0.5TiO3-0.06BaTiO3陶瓷结构与性能的影响
彭聪斐,黄荣厦,黎家就,熊顺进,林华泰
(广东工业大学 机电工程学院,广州 510006)
以HfO2的形式将Hf元素掺杂到BNBT陶瓷中,采用固相烧结法制备(Bi0.5Na0.5)0.94Ba0.06Ti1−0.01Hf0.01xO3(100BNBT-Hf,=0~2.0,摩尔分数)无铅陶瓷,系统研究Hf掺杂对100BNBT-Hf陶瓷晶体结构、显微结构和电学性能的影响。结果表明,所有100BNBT-Hf陶瓷均处于准同型相界区,为纯钙钛矿结构。添加少量HfO2可有效地促进100BNBT-Hf陶瓷的晶粒长大,100BNBT-1.0Hf的平均晶粒尺寸达到2.30 μm。从室温环境下测量的电滞回线中发现,随HfO2含量增加,该100BNBT-Hf陶瓷从正常铁电相变为弛豫铁电相再转变为顺电相,其中的 100BNBT-1.0Hf表现出优异的铁电性,而100BNBT-2.0Hf陶瓷则具有良好的储能特性,储能效率达到38.23%;在电致应变方面,100BNBT-1.0Hf陶瓷具有高电场应变和大逆压电常数,分别为0.35%和583 pm/V。
BNT-BT;Hf掺杂;场致应变;B位掺杂;固相烧结
压电陶瓷是能够将电能与机械能相互转换的功能型材料,如铌酸铅和锆钛酸铅(PZT)压电陶瓷[1],广泛应用于微型泵、墨盒、减震器和医疗器械等设备[2]。其中,具有高机电耦合系数的PZT陶瓷是主流的压电材料,但它在烧结或使用过程中极易产生PbO等挥发性污染物,严重污染环境,所以需要用更安全的无铅压电材料代替[3−4]。迄今为止,人们发现有许多处于三方相和四方相共存区域(准同型相界区,morphotropic phase boundary,简称MPB)[5−9]的无铅压电陶瓷表现出不亚于PZT陶瓷的机电性能,如BaTiO3(BT)[10],(Bi0.5-Na0.5)TiO3(BNT)[11]和(K0.5Na0.5Nb)O3(KNN)[12]。在这些钙钛矿型(ABO3)陶瓷体系中,BNT陶瓷因具有高铁电和高居里温度而备受青睐。但纯BNT同时也存在高矫顽场和高导电率的缺陷,所以常在BNT陶瓷中引入新组元形成新的固溶体,如BNT-BaTiO3,Bi0.5- Na0.5TiO3-BaNb2O6,Bi0.5Na0.5TiO3-(Bi0.5K0.5)TiO3,BNT- (Bi0.5K0.5)TiO3-BaTiO3,以及BNT-KNbO3,BNT-0.065- BaTiO3-KNbO3和BNT-SrTiO3[13−19]等,使BNT陶瓷的部分性能得到提升。除了组合新的固溶体外,对具有钙钛矿结构的BNT陶瓷进行离子掺杂也可提高陶瓷的性能。在先前的研究中,主要集中在取代BNT基陶瓷的A位[20−21],忽略了通过B位取代来改善性能的想法。其实,一定程度的B位取代也会影响BNT基陶瓷的结构和性能。TIAN等[22]用Hf4+取代BaTiO3陶瓷中的Ti4+,陶瓷的压电常数33和33都得到改善,分别到达305pC/N和57%;HUSSAIN等[23]用Hf4+取代Bi0.5(Na0.78K0.22)0.5TiO3陶瓷中的Ti4+,在7 kV/mm电场强度下获得约0.26%的电致应变。因此,与Ti4+半径相近却具有相同价态的Hf4+成为一种有效取代BNT基压电陶瓷B位的元素。一直以来,二元系(1−)Bi0.5Na0.5TiO3-BaTiO3(缩写为BNT-BT)被认为是最有前途的候选压电材料之一[24−25],它具有较宽的准同型相界区,且大量研究表明当=0.06时其性能达到峰值[25−26]。因此,本文作者以0.94BNT-0.06BT为基质,以HfO2的形式掺杂Hf元素进行B位取代,制备(Bi0.5Na0.5)0.94Ba0.06Ti1-0.01xHf0.01xO3(简称为100BNBT-Hf,=0,0.5,1.0,1.5,2.0,摩尔分数)压电陶瓷,研究Hf掺杂对BNT-BT陶瓷的结构和电性能的影响,为无铅压电陶瓷的制备提供一种思路。
采用传统固相烧结法制备(Bi0.5Na0.5)0.94Ba0.06- Ti1-0.01xHf0.01xO3(简称为100BNBT-Hf,为0,0.5,1.0,1.5,2.0,摩尔分数,下同)陶瓷。所用原料包括Bi2O3(纯度为99.9%), Na2CO3(99.8%),K2CO3(99.5%),BaCO3(99%),TiO2(98%),HfO2(99.9%),均为阿拉丁生化科技有限公司生产,粒度约为100 μm。按照化学计量比称取原料,考虑到Bi和Na元素在高温环境中极易挥发,所以Bi2O3和Na2CO3均过量1%(摩尔分数)作为挥发的补偿量。将所有原料倒入装有氧化锆球的尼龙罐中(球料质量比为8:1),加入高纯度酒精作为球磨介质,转速为300 r/min,球磨24 h。将球磨后的粉末置于100 ℃烘箱中烘干,再放入箱式炉内,在800 ℃保温2 h进行预烧,使粉体产生一定收缩。之后对预烧粉末进行造粒,加入聚乙烯醇缩丁醛酯(PVB)作为粘接剂,混合均匀后过筛,压制成直径12 mm、厚度1 mm的圆片。将圆片放入马弗炉,加热至850 ℃保温1 h排胶,然后在1200 ℃保温4 h,随炉冷却,得到100BNBT-Hf(=为0,0.5,1.0,1.5,2.0)陶瓷 样品。
采用阿基米德排水法测定100BNBT-Hf陶瓷的密度,并计算相对密度。用X射线衍射仪(XRD,D8 ADVANCE,BRUCKER AXS,德国)分析陶瓷的物相组成。利用扫描电镜(SEM,JSM-7001F,日本)观察陶瓷的显微结构,并用图像处理软件Image Pro Plus测定电镜图内所有晶粒的尺寸,并计算晶粒的平均尺寸。将陶瓷样品抛光后镀上电极,采用RADIANT Trek MODEL-609B标准铁电分析系统测量陶瓷极化后的电滞回线(Polarization-Electric filed,即回线),并用铁电分析仪TF-1000(Aixacct,德国)和激光衍射仪(SIOS Meßtechnik GmbH,德国)测定陶瓷的电应变曲线,包括应变−电场强度(Strain-Electric filed)曲线和电流密度−电场强度(Current density-Electric filed)曲线,即曲线和曲线)。
图1所示为100BNBT-Hf陶瓷的XRD谱。由图可见所有陶瓷具有相同的衍射峰,没有出现第二相,表明Hf4+完全融入到了BNBT基体中形成具有钙钛矿结构的固溶体。为进一步了解样品内部的相转变情况,选择(111)和(200)[27]这2个重要的衍射峰进行分析,其放大图分别如图1(b)和1(c)所示。当=0时,(111)和(200)峰均出现明显的分裂,说明未掺杂Hf元素的BNBT陶瓷处于三方相和四方相共存的准同型相界区(MPB)。在BNBT陶瓷中逐渐引入Hf元素后,(111)与(200)峰的分裂现象开始变得不明显,当>1.0时,(200)的分裂峰(002)完全消失,融入到(200)峰,这是由于随HfO2含量增加,陶瓷中的四方相逐渐转变为三方相产生的结果。
图2所示为100BNBT-Hf陶瓷的晶粒形貌及平均晶粒尺寸。从图中看出,=0~1.5的陶瓷结构均匀,晶形平整,晶界清晰,说明晶粒生长良好。当HfO2掺杂量达到2%时,晶粒棱角变得圆润,晶粒尺寸明显减小,并出现较多的孔洞(见图2(e))。从图2(f)可见随掺入HfO2的含量增加,晶粒尺寸先增大后减小:平均晶粒尺寸从BNBT的2.07 μm增大到100BNBT- 1.0Hf的2.30 μm,之后又显著减小至100BNBT-2.0Hf的1.71 μm。主要是因为掺入少量HfO2(≤1.5)时,与Ti4+具有相近半径的Hf4+能够均匀地融入钙钛矿晶格中,可降低晶界移动的活化能,有效提升壁垒的运动能力[28],这为晶粒长大提供了有利条件;但继续掺入HfO2(>1.5)时,超过了100BNBT-Hf的固溶度,过量Hf4+富集在晶界上,限制晶体的生长[29],所以得到细小晶粒。100BNBT-Hf陶瓷的密度与致密度如图3所示。从图中看出,随HfO2掺入量的增加,陶瓷密度有所降低,当HfO2掺杂量为1%时,陶瓷致密度达到峰值为99.3%。所有样品的致密度均在98%以上,也说明1200℃是合适的烧结温度,可以使得晶粒生长紧密,从而获得了高致密度的100BNBT-Hf陶瓷。
图1 100BNBT-xHf陶瓷的XRD谱
(a) BNBT; (b) 100BNBT-0.5Hf; (c) 100BNBT-1.0Hf; (d) 100BNBT-1.5Hf; (e) 100BNBT-2.0Hf
图2 100BNBT-xHf陶瓷的晶粒形貌与平均晶粒尺寸
(a), (b), (c), (d), (e) SEM morphology of BNBT,100BNBT-0.5Hf,100BNBT-1.0Hf,100BNBT-1.5Hf and 100BNBT-2.0Hf, respectively; (f) The average grain size of ceramics
图3 100BNBT-xHf陶瓷的密度与致密度
图4所示为100BNBT-Hf陶瓷在6 kV/mm电场强度下的电滞回线()。当=0时,曲线表现出典型的铁电体特征,剩余极化强度r为32.8 μC/cm2,最大极化强度max为39.9 μC/cm2,矫顽电场c为2.3 kV/mm。随HfO2的加入,回线的“腰部”发生收缩,表现为双电滞回线,说明100BNBT-Hf陶瓷有铁电体转变为弛豫铁电体。当=1.0时,回线的“腰缩”现象最明显,r骤降至10.7 μC/cm2,c降至1.1 kV/mm,而max几乎保持不变,约为39.2 μC/cm2,表现出优异的铁电性。继续增加HfO2时,回线变得扁平,最大极化强度明显降低,曲线从饱和变为不饱和,100BNBT-Hf陶瓷进一步由弛豫铁电体向顺电体转变。当=2.0时,最大极化强度已降至31.0 μC/cm2。结合图2(f)发现,该陶瓷的晶粒尺寸显著减小,可见此时陶瓷的电学性能受到了晶粒的尺寸效应的影响,过量Hf4+富集在晶界上阻止晶粒长大,在回线上表现为最大极化强度变弱,陶瓷铁电性下降。
图4 100BNBT-xHf陶瓷的电滞回线
储能效率直接反映材料的储能性能。根据图4所示电滞回线,获得100BNBT-Hf陶瓷的能量损耗密度(loss)和剩余存储能量密度(rec),然后按照公式[30]=rec/(recloss)计算出储能效率(),结果如图5所示。当=0时,剩余存储能量密度和储能效率分别只有13.39 mJ/cm3和9.71%,随Hf掺杂量增加,100BNBT-Hf的回线“束腰”更明显,能量损耗密度逐渐降低,剩余存储能量密度相应增大,因此储能效率不断提高,所以100BNBT-2.0Hf陶瓷表现出最佳的储能性能,储能效率达到38.23%。这种情况主要是因为随Hf掺杂量的增加,陶瓷从铁电体逐步过渡为弛豫铁电体,而且内部纳米极化微区的数量增加,所以在外加电场的作用下表现出低矫顽场和低剩余极化强度,使得陶瓷储能效率提高。
图5 100BNBT-xHf陶瓷的能量损耗密度(Wloss),剩余存储能量密度(Wrec)以及效率(η)
图6所示为100BNBT-Hf陶瓷电滞应变的回线和回线。从图6(a)看到,≤0.5时,回线为对称的蝴蝶状,陶瓷表现出铁电有序性,最大正应变为0.16%,最大负应变为0.18%。当增加到1.0时,回线变为萌芽状,最大正应变达到0.35%,而此时的负应变发生骤降,几乎消失不见(约为0.012%),主要原因是在强度为6 kV/mm的电场作用下,100BNBT-Hf陶瓷发生了从铁电相向弛豫铁电相的转变。从图1可知01.0时,(111)和(002)衍射峰均发生弱化,反映出四方相含量减少,这可能是引起陶瓷的铁电性能提高,并产生大的电致应变的内在原因。再进一步增加Hf元素时,最大正应变开始下降,负应变依然很小。这主要是受到晶粒的尺寸效应作用,陶瓷在电场作用下的应变量减小。
图6 常温下100BNBT-xHf陶瓷的电致应变测试结果
(a)loops; (b)loops
从图6(b)看出,纯BNBT陶瓷在正电场区域内出现1和2这2个明显的电流密度峰值,1峰的产生是因为典型的铁电畴发生了变化,2峰则是由于受到缺陷偶极子的影响。在烧结过程中,碱金属(Na)的挥发导致A位空位的产生,这些空位与氧空位一起形成缺陷偶极子,从而影响曲线和回线。与纯BNBT陶瓷相比,=0.5的100BNBT-Hf陶瓷,由于其内部的纳米极化微区数量增加,导致矫顽场减小,1峰往较低的电场强度移动,同时2峰则往较高的电场强度移动。=1.0的100BNBT-Hf陶瓷出现了3和4这2个电流密度峰,这表明陶瓷在遍历弛豫态与正常铁电态之间相互转化。
图7 Hf掺杂量对100BNBT-xHf陶瓷室温下的压电常数(d33)和逆压电常数()的影响
1) 在(Bi0.5Na0.5)0.94Ba0.06TiO3陶瓷中掺杂Hf进行B位取代,所得100BNBT-Hf陶瓷均为钙钛矿结构,处于四方相和菱方相共存的准同型相界区。
2) 掺杂少量Hf元素可促使BNBT陶瓷晶粒长大,=1.0时平均晶粒尺寸为2.30 μm,但掺杂量超过100BNBT-Hf中Hf的固溶度(≥1.5)时,晶粒尺寸减小,在=2.0时,晶粒尺寸显著下降至1.71 μm。
3) 在常温下,随Hf含量增加,100BNBT-Hf陶瓷从正常的铁电相变为弛豫铁电相再转变为顺电相。其中,100BNBT-1.0Hf表现出优异的铁电性,而100BNBT-2.0Hf陶瓷则表现出最好的储能性能,储能效率达到38.23%。
4) 掺杂少量Hf可提升BNBT陶瓷的场致应变能力。其中,100BNBT-1.0Hf陶瓷在6 kV/mm电场强度下获得0.35%的高电场应变和583 pm/V的大逆压电常数。
5) B位取代的BNBT陶瓷在场致应变方面表现出优异的性能,具有取代铅基材料的潜力。
[1] REN P F, ZHU J L, OU X P, et al. Preparation of PZT ferroelectric thin films by electrochemical reduction[C]// 2008 2nd IEEE International Nanoelectronics Conference. Shanghai, China, 2008: 310−314.
[2] KHESRO A, WANG D, HUSSAIN F, et al. Temperature stable and fatigue resistant lead-free ceramics for actuators[J]. Applied Physics Letters, 2016, 109(14): 142907.1−142907−5.
[3] RODEL J, JO W, SEIFERT K T P, et al. Perspective on the development of lead-Free piezoceramics[J]. Journal of the American Ceramic Society, 2009, 92(6): 1153−1177.
[4] HERNANDEZ-CUEVAS G, LEYVA MENDOZA J R, GARCÍA-CASILLAS P E, et al. Effect of the sintering technique on the ferroelectric and d33piezoelectric coefficients of Bi0.5(Na0.84K0.16)0.5TiO3ceramic[J]. Journal of Advanced Ceramics, 2019, 8(2): 278−288.
[5] RAMAJO L, CAMARGO J, RUBIO-MARCOS F, et al. Influences of secondary phases on ferroelectric properties of Bi(Na,K)TiO3ceramics[J]. Ceramics International, 2015, 41(4): 5380−5386.
[6] CHEN P Y, CHOU C C, TSENG T Y, et al. Comparative study between conventional and microwave sintered lead-free BNKT ceramics[J]. Ferroelectrics, 2014, 381(1): 196−200.
[7] AMAN U, CHANG W A, ALI H, et al. The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3piezoelectric ceramics synthesized by the sol–gel technique[J]. Current Applied Physics, 2010,10(6):1367−1371.
[8] ANJALI K, AJITHKUMAR T G, JOY P A. Correlations between structure, microstructure, density and dielectric properties of the lead-free ferroelectrics Bi0.5(Na,K)0.5TiO3[J]. Journal of Advanced Dielectrics, 2015, 1550028: 1−6.
[9] GONZALEZ A M, PARDO L, MONTERO-CABRERA M E, et al. Analysis of the rhombohedral–tetragonal symmetries coexistence in lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3ceramics from nanopowders[J]. Advances in Applied Ceramics, 2016, 115(2): 96−105.
[10] RÉMY U L, MARCHET P, PHAM-THIM, et al. Improved properties of doped BaTiO3piezoelectric ceramics[J]. Physica Status Solidi, 2019, 216(22): 1−9.
[11] LIY M, CHEN W, ZHOU J, et al. Dielectric and piezoelecrtic properties of lead-free (Na0.5Bi0.5)TiO3-NaNbO3ceramics[J]. Materials Science and Engineer, 2004, 112(1): 5−9.
[12] SHI J P, YUY J, CHENX L, et al. Phase structure, raman spectroscopic, microstructure and dielectric properties of (K0.5Na0.5)NbO3-Bi(Li0.5Nb0.5)O3lead-free ceramics[J]. Applied Physics A, 2019, 125(9): 1−9.
[13] ZHENG L, YI X, ZHANG S, et al. Complete set of material constants of 0.95(Na0.5Bi0.5)TiO3-0.05BaTiO3lead-free piezoelectric single crystal and the delineation of extrinsic contributions[J]. Applied Physics Letters, 2013, 103(12): 122905.
[14] ZHOU C, LIU X. Dielectric and piezoelectric properties of Bi0.5Na0.5TiO3-BaNb2O6, lead-free piezoelectric ceramics[J]. Journal of Materials Science Materials in Electronics, 2008, 19(1): 29−32.
[15] ZHAO W, ZHOU H, YANY K, et al. Morphotropic phase boundary study of the BNT-BKT lead-free piezoelectric ceramics[J]. Key Engineering Materials, 2008, 368/372: 1908− 1910.
[16] DAI Y J, ZHANG X W, CHEN K P. An approach to improve the piezoelectric property of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3- BaTiO3lead-free ceramics[J]. International Journal of Applied Ceramic Technology, 2011, 8(2): 423−429.
[17] KANTHA P, PISITPIPATHSIN N. Effect of KNbO3addition on diffuse phase transition and dielectric properties of Bi0.5Na0.5TiO3ceramics[J]. Integrated Ferroelectrics, 2018, 187(1): 129−137.
[18] LI J, WANG F, QIN X, et al. Large electrostrictive strain in lead-free Bi0.5Na0.5TiO3-BaTiO3-KNbO3ceramics[J]. Applied Physics A, 2011, 104(1): 117−122.
[19] SALEEM M, KIM I S, KIM M S, et al. Large signal electrical property of CuO-doped of a Bi0.5Na0.5TiO3-SrTiO3[J]. Journal of Electroceramics, 2018, 40(2): 88−98.
[20] YUAN Y, ZHANG S, ZHOU X, et al. Phase transitions and electrical properties in La3+-substituted Bi0.5(Na0.75K0.15Li0.10)0.5TiO3ceramics[J]. Journal of Materials Science, 2006, 41(2): 565−567.
[21] SUCHANICZ J, LEWCZUK U, KONIECZNY K. Effect of Ba doping on the structural, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3ceramics[J]. Ferroelectrics, 2016, 497(1): 85−91.
[22] TIAN H Y, WANG Y, MIAO J, et al. Preparation and characterization of hafnium doped Barium Titanate ceramics[J]. Journal of Alloys & Compounds, 2007, 431(1/2): 197−202.
[23] HUSSAINA, AHN C W, ULLAH A, et al. Effects of hafnium substitution on dielectric and electromechanical properties of lead-free Bi0.5(Na0.78K0.22)0.5(Ti1−xHf)O3Ceramics[J]. Japanese Journal of Applied Physics, 2010, 49(4): 041504.
[24] HIRUMA Y, WATANABEY, NAGATAH, et al. Phase transition temperatures of divalent and trivalent ions substituted (Bi1/2Na1/2)TiO3ceramics[J]. Key Engineering Materials, 2007, 350: 93−96.
[25] XU C, LIN D, KWOK K W. Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3lead-free piezoelectric ceramics[J]. Solid State Sciences, 2008, 10(7): 934−940.
[26] TAKENAKA T, MARUYAMA K I, SAKATA K. (Bi1/2Na1/2) TiO3-BaTiO3system for lead-free piezoelectric ceramics[J]. Japanese Journal of Applied Physics, 1991, 30(9B): 2236−2239.
[27] QUIROGA D, DIAZ J, VENET M, et al. Evolution of crystalline phases and morphotropic phase boundary of the (Bi,Na)TiO3- (Bi,K)TiO3-BaTiO3lead-free ceramic system[J]. Journal of Alloys & Compounds, 2017, 691: 498−503.
[28] ZHANG S J, RU X, THOMAS R S. Lead-free piezoelectric ceramics vs. PZT[J]. Journal of Electroceramics, 2007, 19(4): 251−257.
[29] HOU Y D, CHANG L M, ZHU M K, et al. Effect of Li2CO3addition on the dielectric and piezoelectric responses in the low-temperature sintered 0.5 PZN–0.5 PZT systems[J]. Journal of Applied Physics, 2007, 102(8): 084507.
[30] QU N, DU H, HAO X. A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics[J]. Journal of Materials Chemistry C, 2019, 26(7): 7993−8002.
Effect of B-site Hf doping on the structure and properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3ceramics
PENG Congfei, HUANG Rongxia, LI Jiajiu, XIONG Shunjin, LIN Huatai
(School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China)
A series of HfO2-modified (Bi0.5Na0.5)0.94Ba0.06Ti1−xHfO3(100BNBT-Hf,=0−2.0, mole fraction) ceramics were prepared by solid state sintering method, and Hf element was doped into BNBT ceramics in the form of HfO2. The effects of Hf element on crystal structure, microstructure and electrical properties of 100BNBT-Hf samples were analyzed systematically. The results show that all 100BNBT-Hf ceramics with pure perovskite structure were near the morphotropic phase boundary. The addition of Hf can promote the grain growth of 100BNBT-Hf, and the average grain size of 100BNBT-1.0Hf were reached 2.30 μm. With the increase of Hf4+content, the ceramic changed from normal ferroelectric phase to relaxor ferroelectric phase and then to paraelectric phase at room temperature. The 100BNBT-1.0Hf showed the best excellent ferroelectricity, while the 100BNBT-2.0Hf ceramics displayed the best energy storage characteristics, and the energy storage efficiency reached 38.23%. In terms of field-induced strain, a large electro-strain of 0.35% and a large piezoelectric coefficient of 583 pm/V were obtained at=1.0.
BNT-BT; Hf doping; electro-strain; B-site doping; solid state sintering
TQ174
A
1673-0224(2020)03-221-06
国家自然科学基金资助项目(51772204);广东高技术陶瓷创新团队项目(2013G061)
2020−03−18;
2020−04−03
黄荣厦,副教授,博士。电话:18620203995;E-mail: 9319484@qq.com
(编辑 汤金芝)