成人注意缺陷多动障碍在内外源冲突时的表现:眼动的证据*

2020-06-08 06:31李垚锦周兵平
心理学报 2020年6期
关键词:外源成人导向

李垚锦 张 微 扶 蓓 周兵平

成人注意缺陷多动障碍在内外源冲突时的表现:眼动的证据

李垚锦 张 微 扶 蓓 周兵平

(华中师范大学心理学院, 湖北省人的发展与心理健康重点实验室, 青少年网络心理与行为教育部重点实验室, 武汉 430079)

在注意定向与维持上, 注意缺陷多动障碍(ADHD)个体更容易受到外部刺激的干扰而导致目标任务加工进程受阻, 表现出了注意定向反应的缺陷, 但导致任务失败的原因是由于对突然出现的外部无关刺激的过度兴奋还是对内源性目标刺激的持续维持能力减弱, 尚不清楚。研究采用反向眼跳范式、记忆导向眼跳范式和视觉导向眼跳范式, 来探索成人ADHD内外源注意定向反应的情况, 以及当二者发生冲突时, 成人ADHD失败的可能机制。结果发现, 在反向眼跳任务上, 成人注意缺陷多动障碍组错误率更高, 并且差异性显著。但在记忆导向眼跳任务中, 成人注意缺陷多动障碍组与正常组的差异不显著。在视觉导向眼跳任务中, 成人注意缺陷多动障碍组的正确眼跳潜伏期比正常组要短, 且二者之间的差异显著。这说明, 在内外源刺激反应的冲突导致的情境中, 成人注意缺陷多动障碍的反应明显落后于正常个体, 这种缺陷并非由于其维持内源性注意产生定向反应落后所导致的, 而是与其外源注意定向反应过强有关。

注意缺陷多动障碍; 眼跳; 内外源注意; 刺激反应冲突。

1 前言

注意缺陷多动障碍(Attention Deficit Hyperactivity Disorder, ADHD)被认为是一种神经性发育障碍(Miranda, Berenguer, Roselló, Baixauli, & Colomer, 2017), 其核心症状为注意缺陷、多动和冲动(APA, 2013)。ADHD通常发病于儿童时期, 但不会自动消失, 高达2/3的ADHD儿童在成年期仍然保留了部分甚至全部ADHD特征, 成人ADHD的患病率为2%~5% (Brandt & Fischer, 2017)。

维持注意与冲动控制的缺陷被认为是ADHD行为问题的核心。ADHD患者的行为反应同时受自上而下的控制系统与自下而上的刺激驱动系统的相互作用(King, Colla, Brass, Heuser, & von Cramon, 2007; Graziano, Mcnamara, Geffken, & Reid, 2013), 任何一个系统功能的失调都会导致刺激目标定向反应的缺陷。自上而下的加工过程与控制系统关系更为密切。在行为上, 这种控制指的是目标导向、资源需求和计划性行为, 需要克服直接刺激以保持对目标的加工, 前额叶在自上而下加工过程中起关键作用(Muhle-Karbe, Jiang, & Egner, 2017)。自下而上的加工过程被认为与外部直接刺激或情感反应的关系更为密切。这种加工过程主要受到顶叶皮层的控制(Oliveri et al., 2010)以及与前额皮质触发的皮质活动有关(Rubia et al., 2016)。一般而言, ADHD患者的内源控制也主要表现出自上而下的加工过程, 与额叶的激活和皮质的去激活有关。然而, 当ADHD患者由外部刺激引发注意转向时, 情况则发生了变化, 有研究者认为此时ADHD个体的行为反应由自下而上加工系统所控制(Kakuszi, Tombor, Papp, Bitter, & Czobor, 2016)。

内源性注意是指在个体原有经验驱动下产生的注意,是一种自上而下的加工过程; 而外源性注意则是由刺激本身引起的注意, 受刺激特性控制,是一种自下而上的加工过程(王勇慧, 周晓林, 王玉凤, 张亚旭, 2005; Müller & Rabbitt, 1989)。当内源注意和外源注意发生冲突时, ADHD个体同样表现出一定程度的冲突控制能力落后。比如, Stroop和逆Stroop任务主要是通过颜色和词义的不一致来考察被试的抑制控制能力。有研究表明, 自下而上的注意选择是由外界的刺激引发的; 自上而下的注意选择是由人类根据行为目标主动引导的(陈骐, 刘岩, 周晓林, 2005; Müller & Rabbitt, 1989)。在Stroop任务中的知觉层次上, 对字色(物理属性)的加工激活自下而上的加工过程; 对字意(心理属性)的加工激活了自下而上和自上而下两个加工过程。在反应判断的层次上, 到底是对字色进行判断还是字意进行判断就需要根据要求进行目标判断。目标判断的反应阶段涉及到处理冲突的过程, 此过程就为自上而下的加工过程。逆Stroop任务是经过Stroop任务训练之后, 要求被试抑制对字词语意进行自动化加工, 从而判断字词的颜色。本质上是一致的。Slaats-Willemse等人(2003), 他们对ADHD患者和正常被试进行了简单对比分析, 发现两组在Stroop干扰评分方面存在显着差异。ADHD组与正常组相比, ADHD组需要花费更多的时间来完成不一致的颜色−单词组合任务。因此ADHD的干扰抑制能力比正常人表现要差; Yongning和Yu (2011)在逆Stroop任务中得出结论, ADHD患者自上而下加工系统所控制的内在控制能力较弱, 更加容易受到抑制干扰。

但这样解释可能有偏差, 正如Jarrett和Ollendick (2008)所指出, 大多数有关于ADHD控制缺陷的研究中, 多以传统的行为实验任务(例如, Stroop任务, Stop signal任务等)来进行, 只能看到被试对当前的目标刺激所产生的反应结果, 而无法对产生结果的冲突过程进行分析。故很容易得到ADHD维持目标能力及主动抑制加工能力薄弱的结论。事实上, 上述传统的实验任务可能会因为一些潜在因素而存在着不准确性, 例如, ADHD患者在Stroop任务中的颜色词卡得分较低可能是由于命名较慢(Ryan et al., 2016)而不是由于干扰控制能力较差导致的; ADHD患者在Go/No-go任务中, 不仅会有抑制控制过程的参与, 还会因其他认知过程(例如选择性注意)的加入, 使得实验变得混乱(Rubia, Smith, Brammer, Toone, & Taylor, 2005)。特别是当任务同时涉及到内源性注意定向反应(目标)与外源性注意力定向反应(干扰)相冲突时, 任务的失败是由于前一过程较弱还是第二过程过强所导致, 并不清楚。

考虑到视空间定向反应通常根据控制源被分为外源和内源两种模式(徐岩, 周晓林, 王玉凤, 2006)。为进一步探索两者冲突对ADHD的影响, 本研究采用眼动技术, 设计反向眼跳的实验任务、记忆导向眼跳的实验任务和视觉导向眼跳的实验任务来明确这一加工过程。反向眼跳任务是指主动抑制指向目标的朝向眼跳, 把注意转向目标刺激的对侧, 产生与目标到中央注视点大致相等距离(镜像距离)的眼跳(Fukushima, Tanaka, Williams, & Fukushima, 2005)。完成一次反向眼跳任务至少包含两个加工阶段:抑制指向突发刺激的朝向眼跳和有意识地产生远离突发刺激的反向眼跳(Munoz & Everling, 2004)。在要求被试把注意转向目标刺激的对侧, 产生与目标到中央注视点大致相等距离(镜像距离)的眼跳, 这一任务要求就是内源目标导向, 而实际出现的目标刺激则作为外源刺激, 会直接诱发外源性注意定向。冲突具体体现在内外源同时产生竞争这一过程。Tsujimoto等人(2013)表明ADHD抑制注意分散的能力差于正常被试, 是由于他们的前额叶激活异常。因此, 在反向眼跳任务中, 我们假设ADHD患者会在内外源注意同时竞争时, 因为内源抑制不能, 从而导致ADHD更容易受到外源刺激的影响。为进一步评估ADHD任务失败是由于外源刺激所产生的反应水平太强还是内源目标驱动所产生的反应抑制水平太弱, 我们进一步设计了视觉导向型眼跳任务和记忆导向型眼跳任务。视觉刺激的反射性眼跳被称为视觉导向眼跳, 也称为朝向眼跳, 指由外部刺激突然出现而产生的眼跳(Parton et al., 2007), 主要由外源性刺激引起的, 可以考察被试对外部视觉刺激的反应能力。而记忆导向眼跳指个体维持内源性眼跳的能力, 主要记录被试的内源目标驱动所主动发起的眼跳过程。分离两种眼跳过程进行考察, 是对ADHD在反向眼跳实验任务中失败的原因的进一步探索。

2 实验1:反向眼跳实验

2.1 方法

2.1.1 被试

为确保足够的统计检验力, 本研究使用G*power 3.1.9.4软件计算样本量。根据已有的相关研究(Dankner, Shalev, Carrasco, & Yuval-Greenberg, 2017),将最大效应值(Cohen’s)设置为1, 在0.05的显著性水平达到85%的统计检验力时, 每组样本量至少为19。因此, 每组选择25名被试作为计划样本量。

在学校网络社交平台上发布被试招募信息以及网络问卷链接, 通过网络问卷链接筛选并联系, 年龄为18岁以上的60名大学生(专业为非神经心理学类)。被试到现场后, 再通过填写纸质成人注意缺陷多动障碍自陈量表(Adult ADHD Self-Report Scale, ASRS)以及采用根据DSM-IV编制的结构化访谈问卷(Structured Clinical Interview for the DSM-IV, SCID)对被试进行进一步的访谈和观察, 排除其他精神病症状。所有被试经量表筛选入组, 均无其他精神障碍以及最近半年内未服用过利他林等精神类药物。正式进入实验阶段的被试共57人(ADHD组29人, 正常组28人)。剔除无效数据后ADHD组共25人(20名男性, 5名女性; 平均年龄 = 18.76 ± 0.79岁); 正常组共26人(18名男性, 8名女性; 平均年龄 = 19.01 ± 0.98岁)。两组在年龄、性别上差异均不显著(> 0.05), 且ADHD组的ASRS得分(ASRS = 26.64 ± 6.26分)显著高于对照组(ASRS = 6.35 ± 4.45分),(49) = 13.38,< 0.001, Cohen’s= 3.73, 说明分组有效。

ADHD成人入选标准和甄选程序如下, 首先通过高淑芬等人(2008)修订的成人注意缺陷多动障碍自陈量表(Adult ADHD Self -Report Scale, ASRS)的中文版进行筛查。ASRS量表共有18道题目, 第1~9题为A部分, 主要测查注意缺陷等症状; 第10~18题为B部分, 主要测查冲动、多动等症状。该量表采用李克特式0~4级5点计分, 选项为从不、很少、有时、常常、非常频繁, 将A、B部分加总之后, 若得分为0~16分, 则为非ADHD; 若是17~23分, 则疑似ADHD; 若是达到24分及以上者, 则可被评估为ADHD。ASRS的内部一致性信度为0.83~0.91, 诊断敏感度有56.3%, 诊断特定性为98.3%。并进一步使用结构化访谈问卷(Structured Clinical Interview for the DSM-IV, SCID)排查其他精神病状, SCID是使用最广泛的评估DSM里精神障碍的结构化访谈问卷, 可以很好的区分情绪障碍、精神障碍、物质使用障碍、强迫症、焦虑症、赌博障碍及成人注意缺陷多动障碍等障碍。许俊亭(2011)等人评估心理解剖SCID诊断在进行诊断时的特异性和敏感性, 发现心理解剖诊断SCID诊断的抑郁, 焦虑等障碍的重测信度均在0.75以上, 灵敏性和特异性也比较好。因此在本研究中, 将得分为ASRS得分为24分以上, 以及无其他精神障碍的被试纳入成人ADHD组。两组被试视力或矫正视力正常, 右利手, 无色盲、色弱。

2.1.2 实验程序

在本研究中, 主要采取主试和被试二对一的方式进行实验, 一名主试向被试解释指导语, 另一名主试负责眼动主试机的监控。本研究使用的眼动仪是Eyelink 1000, 该仪器的数据采样率为250 Hz, 采用瞳孔+角膜模式采集数据, 空间解析度 < 0.005°,低噪音, 准确度高, 平均注视位置误差小于0.5°, 本研究用来呈现刺激材料的被试机是1024×768像素的液晶显示器。

在眼动实验室的被试机上呈现用E-Prime 1.0编制的眼动程序, 在眼动实验室进行实验, 周围无噪音干扰, 被试距离屏幕75 cm, 被试可以根据身高来调整头托的高度, 以保证实验在被试身体舒适、注意力集中的状态下实施。考虑到ADHD被试注意力集中时间较短, 因此本实验设计的时间控制在5~7分钟之间,本实验结束后可允许被试休息1分钟, 但是要求尽量保持头部不动, 每次休息之后再次进入正式实验前再次进行校准。

实验分为练习阶段和正式实验阶段, 练习实验阶段有6个trials, 正式实验阶段有36个trials。在练习阶段中, 随机呈现6种刺激条件各一次; 在正式实验阶段, 随机呈现6种刺激条件各6次。以及为了防止被试因练习效应而产生习惯化和预期的注意定向, 我们设置了目标点的两种目标方向(左边或右边)以及三种角度的目标视角(3°、6°、9°)。因此本实验是一个2×2×3的三因素混合实验设计, 自变量为目标出现的方向(注视点左边或右边)×目标的视角(3°、6°、9°)×被试类型(成人ADHD组和正常成人组)。其中, 组内变量为两种目标出现的方向以及三种目标视角, 组间变量为ADHD组和正常对照组。在反向眼跳实验中, 因变量是被试方向正确率、正确眼跳潜伏期, 方向正确的纠正率。所有因变量值均为从目标刺激出现到消失这一过程中被试的眼动反应。

在反向眼跳实验中, 屏幕中央的注视点“+”提示目标刺激将随机出现在其两侧, 然后迅速呈现一个目标, 当中央注视点出现的时候, 被试要注视中央注视点, 当目标刺激出现时, 要求被试不去注视目标刺激, 而是要看与目标刺激相反的方向, 并且看的位置要与目标到中央注视点的距离大致相等(即镜像位置), 如果目标出现在“+”号的左侧, 被试需要注视“+”的右侧; 相反, 如果目标出现在“+”的右侧, 被试需要注视“+”的左侧。由眼动仪自动记录目标刺激出现到消失, 以及反应界面呈现时间内的眼动数据(见图1)。

图1 反向眼跳实验流程图

2.2 结果

剔除所有眼跳幅度小于0.1°的眼跳, 以及正负3个标准差外的极端数据。使用SPSS 22.0对刺激方向/刺激视角与组别的交互作用进行多因素方差分析, 结果表明被试与刺激方向的交互作用只在实验1中方向正确的纠正率上差异显著,(1, 49) = 5.00,= 0.03 < 0.05,η= 0.09; 但在其它实验条件下刺激方向/刺激视角和组别的交互作用均不显著。因此目标呈现方向和目标呈现视角对被试的影响不大, 以及结合本研究的研究主题, 我们就仅呈现核心内容, 将被试类型(成人ADHD组和正常成人组)、目标出现的方向(左边和右边)、目标的视角(3°、6°和9°)的2×2×3三因素混合实验设计整合成两种被试类型和6种水平[被试类型(成人ADHD组和正常成人组)×水平(左边目标方向、3°的目标视角; 左边目标方向、6°的目标视角; 左边目标方向、9°的目标视角; 右边目标方向、3°的目标视角; 右边目标方向、6°的目标视角; 右边目标方向、9°的目标视角)], 计算出在整体水平下的因变量(方向正确率、正确眼跳潜伏、方向正确的纠正率), 进行多因变量方差分析(见表1)。

对成人ADHD组和正常组的方向正确率, 正确眼跳潜伏期和方向正确的纠正率进行描述性统计以及差异性检验发现, 在方向正确率上, 正常组是高于ADHD组的, 且差异性显著,(1, 49) = 5.30,0.05,η0.10; 在正确眼跳潜伏期上, 正常组与ADHD组差异性不显著,(1, 49) = 2.38,0.05; 在方向正确的纠正率上, 正常组是高于成人ADHD组的, 并且两组的差异性显著,(1, 49) = 19.19,0.001,η0.28。

表1 两组被试在反向眼跳任务中的眼动指标的描述性统计以及差异性检验

2.3 讨论

在反向眼跳的任务中, 考察了在内源刺激和外源刺激同时出现时, 两组被试在反应水平上的差异。正常组眼跳的方向正确率显著高于成人ADHD组, 并且在方向正确的纠正率上, 正常组也是显著高于ADHD组的。两组的正确眼跳潜伏期差异并不显著。这说明在内外源注意冲突的情境中, ADHD被试更容易受到干扰产生错误的反应, 并且错误纠正能力也不如正常组。这可能与ADHD的前额叶功能失调有关。ADHD患者在进行视觉刺激反应时, 会受到前额叶区域的影响(Cannon, Kerson, & Hampshire, 2011)。前额叶是控制着自上而下控制加工过程的重要脑区(Muhle-Karbe et al., 2017), 但导致冲突控制能力的落后是由于维持内源性注意力定向反应能力过弱还是外源性注意定向反应激活过强, 尚不清楚。所以接下来进一步采用了记忆导向型眼跳实验和视觉导向型眼跳实验来分别探讨此问题。

3 实验2:记忆导向眼跳实验

3.1 方法

3.1.1 被试

同实验1。

3.1.2 实验程序

记忆导向的眼跳实验要求当目标刺激出现时, 被试尽量不去注视它, 在目标消失1500 ms后再根据记忆去注视目标曾经出现的位置。但如果被试在1500 ms内就出现了眼跳, 则认为被试在本实验中产生了期望错误(Goto et al., 2009) (见图2)。在该实验中, 被试要抑制朝向目标的自发眼跳和控制延迟眼跳的时间。本实验的因变量是被试的期望错误率、注视正确方向的正确率、正确眼跳潜伏期。其他与实验1相同。

3.2 结果

将被试类型(成人ADHD组和正常成人组)、目标出现的方向(左边和右边)、目标的视角(3°、6°和9°)进行2×2×3的三因素重复测量方差分析, 结果表明, 刺激方向/刺激视角和组别的交互作用均不显著。由于目标呈现方向和目标呈现视角对被试没有影响, 以及结合本研究的研究主题, 我们整合成两种被试类型和6种水平(被试类型:成人ADHD组和正常成人组; 6种水平为左边目标方向、3°的目标视角; 左边目标方向、6°的目标视角; 左边目标方向、9°的目标视角; 右边目标方向、3°的目标视角; 右边目标方向、6°的目标视角; 右边目标方向、9°的目标视角)计算出被试的整体期望错误率、方向正确率和正确眼跳潜伏期进行多因变量方差分析(见表2)。

图2 记忆导向眼跳实验流程图

表2 两组被试在记忆导向眼跳任务中的各眼动指标的描述性统计以及差异性检验

在记忆导向眼跳任务中, 成人ADHD的期望错误率、方向正确率以及正确眼跳潜伏期都与正常组差异不显著[(1, 49) = 0.37,> 0.05;(1, 49) = 0.33,> 0.05;(1, 49) = 2.13,> 0.05]。这说明成人ADHD维持内源性注意目标定向反应的能力是正常的。

3.3 讨论

神经加工缺陷与行为问题之间的关系是复杂的, 并且动机和加工策略等因素可以用来补偿行为调节的问题。由于前人研究时没有探讨抑制加工的时间进程, 也就无法明确在发生内外源注意冲突时, 问题的根源所在。王勇慧、王玉凤和周晓林(2006)的研究也表明ADHD患者在知觉上的干扰控制能力与正常人没有差异。也许维持内源性注意定向目标, 至少是在短时间内加以维持, 以进行相应的调控反应, 这种能力ADHD成人并不存在明显落后。

结合实验1的结果, 可以假想, 成人ADHD在冲动反应下的任务失败是否与其外源性注意反应过强有关呢?因此, 进一步通过视觉导向眼跳任务来明确此问题。

4 实验3:视觉导向眼跳实验

4.1 方法

4.1.1 被试

同实验1。

4.1.2 实验程序

在视觉导向任务中, 首先, 屏幕中央会出现一个注视点“+”, 提示目标刺激(2°视角的黑色实心圆)将随机出现在其左侧或右侧的3°、6°或9°的位置, 要求被试在目标刺激出现时尽快对目标刺激进行水平眼跳(见图3)。在进入正式实验之前被试需要先进行练习, 明白实验操作要求后, 方可进入正式实验。由眼动仪自动记录自目标刺激出现到目标刺激消失这一过程中的眼动轨迹。本实验的因变量是被试眼跳的方向正确率、正确眼跳潜伏期的眼动指标。其他与实验1相同。

图3 视觉导向眼跳实验流程图

4.2 结果

首先进行2 (注视点: 左边或右边) × 3 (目标的视角: 3°、6°、9°) × 2 (被试类型: 成人ADHD组和正常成人组)的三因素重复测量方差分析, 结果显示, 刺激方向/刺激视角和组别的交互作用均不显著。因此将两种被试类型和6种水平(被试类型:成人ADHD组和正常成人组; 6种水平为左边目标方向、3°的目标视角; 左边目标方向、6°的目标视角; 左边目标方向、9°的目标视角; 右边目标方向、3°的目标视角; 右边目标方向、6°的目标视角; 右边目标方向、9°的目标视角)合并成整体作为单因素, 计算出因变量(方向正确率和正确眼跳潜伏期)进行多因变量方差分析。

表3结果说明, 在外源性眼跳任务上, 两组被试的方向正确率都很高, 且差异不显著,(1,49) = 0.07,> 0.05。但在正确眼跳潜伏期上, 成人ADHD组比正常组要短, 差异显著,(1, 49) = 6.00,0.05, η= 0.11。所以成人ADHD更容易受到外部刺激的激活产生过强的外源性注意定向反应。

表3 两组被试在视觉导向眼跳任务中的各眼动指标的描述性统计以及差异性检验

4.3 讨论

在视觉导向型眼跳任务中, 考察的是被试由外源视觉刺激所产生的反应水平(由自下而上加工系统控制)。由于任务较为简单, 两组被试的眼跳正确率均较高, 但是成人ADHD组更快, 表现出了更高的外部刺激激活水平。这得到了很多研究者的支持。例如, López-Martín,Albert, Fernández-Jaén和Carretié (2013)研究表明ADHD患者更容易受到视觉刺激的干扰。

然而, 外部刺激大都是干扰刺激, 短暂激活便需要压制。成人ADHD在此实验中的结果也说明其对外部刺激过度敏感, 这并非正常状态。很多研究者认可这一观点, 如, Klein, Raschke和Brandenbusch (2003)研究表明ADHD患者的行为受内部表征和自我控制的作用较小, 更容易受到外部刺激驱动的作用, 从而对外源线索的反应更加强烈。并且根据Sergeant提出的认知能量模型, 表示随着时间的推进, ADHD患者在后面的实验任务中会由于认知资源不够, 从而更容易疲劳。同时也有研究揭示ADHD疲劳之后会产生冲动反应, 所以反应时间会更快, 很大可能是冲突控制问题而不是疲劳(Sergeant, 2004)。从而在本实验中, ADHD患者表现的更为敏感, 反应速度相比于正常组更快。当然, 虽然是采用眼动范式, 且三个任务要求之间的差别较大, 练习的意义并不是很大, 但本研究仍然无法完全消除练习效应的影响, ADHD个体是否与正常个体在系列认知任务上受练习效应影响更大, 还需要进一步去探索。

成人ADHD对外源性刺激所产生的反应水平更快, 这与自下而上的加工过程有关。自下而上的加工过程被认为与直接刺激或情感的反应更有关系, 更容易受到外部刺激干扰(Joseph et al, 2007; Song & Hakoda, 2011)。成人ADHD的外源刺激产生的反应水平高于内源刺激产生的反应水平, 表现出了冲突控制的缺陷, 更可能是由其的自下而上加工水平太强导致的。这得到了Nesterovsky等人(2015)观点的支持, 他们通过脑电探讨了成人ADHD在自上而下加工系统和自下而上加工系统同时工作的情况下, 成人ADHD在执行控制的自动加工(自上而下加工系统控制)方面效率较低。这主要是因为ADHD患者的大脑皮层中的前额叶皮层和基底中枢神经存在缺陷有关系, 从而导致他们的控制性注意能力的确存在缺损, 难以控制外源的刺激干扰(傅丽萍, 邓赐平, 李其维, 2006), 从而不由自主的产生朝向眼跳。

5 总讨论

为考察成人ADHD是否更容易受到任务冲突的影响, 以及这种不利影响是否与内外源注意力定向反应的一个过程失调有关, 本研究评估了成人ADHD患者在反向眼跳实验, 记忆导向型眼跳实验和视觉导向型眼跳任务中的表现。

首先, 在反向眼跳任务中得到了ADHD更容易受到干扰, 成绩落后的结果毫不奇怪。以往研究者往往简单将其归因于ADHD抑制能力/冲突控制能力的减弱, 这是从整体上进行考虑的结果。甚至将其简单归咎于ADHD内在控制系统功能减退有关, 这种解释看上去很有道理, 但忽略了一个问题, 如果任务并不复杂, 目标定向反应在很短的时间并已经完成, 此时复杂的内部调控系统尚未完全发挥作用, 只是起到部分调控作用, 如简单快速的内源性注意力定向, 此时需要评估的是内外源注意定向反应谁更强大的问题。这种观点得到了Friedman-Hill等人(2010)的支持, 他们发现, ADHD的内源驱动加工过程仅在处理复杂任务的情况下产生, 然而在进行更简单的任务时, ADHD将无法卷入有效的自上而下控制行为, 行为调控能力受到严重影响。Schneidt等人(2018)也认为, ADHD在低难度任务的条件下, 由自上而下加工系统控制的抑制能力会减弱。

本研究发现ADHD患者在内源控制能力上与正常被试相比没有差异, 但是在外源刺激的反应能力上是显著强于正常人的。因此, 注意力的外源性定向在ADHD中可能是功能失调的。ADHD患者冲突控制的失效并不一定是反应抑制能力落后, 有可能是他们不能根据任务需要适时地调节自身的激活状态, 以及不能维持自己的最佳反应激活; 也就是说, ADHD患者很容易过度激活, 或者是激活程度不够, 从而导致其抑制能力减弱(van der Meere, Gunning, & Stemerdink, 1999)。

这可以由Sergeant (2005)的调节状态理论所解释, Sergeant认为ADHD主要是大脑状态调节能力有缺陷而并非执行功能缺陷(如, 内外源注意激活控制功能), ADHD的唤醒状态会受作用力的影响产生不同激活水平。因此, 我们有理由相信ADHD患者容易受到外源干扰的原因可能与外源刺激的过度激活有关。ADHD患者存在着额叶和右顶叶缺陷(Aman, Roberts, & Pennington, 1998; Rosch et al., 2018), 而直接的外源视觉刺激由自下而上加工系统控制, 这种加工系统的异常主要是与额叶和顶叶的脑区存在缺陷有关(Oliveri et al., 2010; Rubia et al., 2016), 因此ADHD患者在自下而上加工阶段会存在异常反应。而事实上, ADHD个体确实表现出对于新意刺激的过度敏感, 唤起过度, 冲动等行为(Kaplan, Sadock, & Grebb, 1994; Friedman-Hill et al., 2010), 一些研究者认为外源性注意的过度激活是其行为不受控制的重要原因(Boucsein, 2012; Doallo, Holguı ́n, & Cadaveira, 2006; Shafer et al., 2012; Siciliano et al., 2017)。

本研究结果, 对于以往主流研究过于关注抑制功能缺陷是一个补充, 同时, 也为教育和临床工作者通过有效控制环境刺激的丰富程度来促进ADHD个体的注意能力提供了建议。由于前人考察ADHD患者的内外源注意的冲突控制能力多使用Stroop任务和停止信号任务等经典的抑制类实验任务, 他们的研究结果大多表明ADHD患者的冲突控制能力的确显著差于正常被试(Jonkman, van Melis, Kemner, & Markus, 2007; Tsujimoto et al., 2013)。但前人的研究, 对ADHD患者内外源加工能力的探讨局限于传统的实验任务, 以及几乎没有使用空间注视定位范式考察被试内外源注意定向能力。因此本研究结合眼动技术直接将被试的内源注意能力与外源注意能力分别通过空间视觉定向进行考察。在过去的研究中, 确实也发现了ADHD患者容易受到外源分心物的干扰的问题(Tsujimoto et al., 2013; Barkley, 2006; Lansbergen, Kenemans, & van Engeland, 2007), 因此使用空间注意定向任务探讨ADHD患者的外源注意能力和内源注意能力需要引起重视。由于成人ADHD的诊断还未有明确的标准, 现在对成人ADHD的诊断多依赖于儿童早期的ADHD症状及成年后的行为表现,容易忽略ADHD患者在年龄上的差异性(Leroy, Jacova, & Young, 2019)。结合神经生理技术对成人ADHD进行有效诊断, 可以成为未来研究的一个方向。

Aman, C. J., Roberts, R. J., & Pennington, B. F. (1998). A neuropsychological examination of the underlying deficit in attention deficit hyperactivity disorder: Frontal lobe versus right parietal lobe theories.(5), 956–969.

American Psychiatric Association. (2013).. 5th ed. Arlington, VA: American Psychiatric Publishing.

Barkley, R. A. (2006).. Guilford Publications.

Boucsein, W. (2012).Springer Science & Business Media.

Brandt, L., & Fischer, G. (2017). Adult ADHD is associated with gambling severity and psychiatric comorbidity among treatment-seeking problem gamblers.https://doi.org/10.1177/1087054717690232

Cannon, R., Kerson, C., & Hampshire, A. (2011). Sloreta and fMRI detection of medial prefrontal default network anomalies in adult ADHD.(4), 358–373.

Chen, Q., Liu, Y., &Zhou, X. L. (2005). A review of recent brain imaging studies on top-down attentional control.(1), 153–154.

[陈骐, 刘岩, 周晓林. (2005). 自上而下注意控制的脑成像研究进展.(1), 153–154.]

Dankner, Y., Shalev, L., Carrasco, M., & Yuval-Greenberg, S. (2017). Prestimulus inhibition of saccades in adults with and without attention-deficit/hyperactivity disorder as an index of temporal expectations.,(7), 835–850.

Doallo, S., Holguı ́n, S. R., & Cadaveira, F. (2006). Attentionalload affects automatic emotional processing: Evidence from event- related potentials.(17), 1797–1801.

Friedman-Hill, S. R., Wagman, M. R., Gex, S. E., Pine, D. S., Leibenluft, E., & Ungerleider, L. G. (2010). What does distractibility in ADHD reveal about mechanisms for top-down attentional control?.(1), 93–103.

Fu, L. P., Deng, C. P., & Li, Q. W. (2006). The cognitive-energetic model — A more comprehensive cognitive model of ADHD.e,(3), 639–642.

[傅丽萍, 邓赐平, 李其维. (2006). 认知能量模型——一种更为综合的ADHD认知理论.,(3), 639–642.]

Fukushima, J., Tanaka, S., Williams, J. D., & Fukushima, K. (2005). Voluntary control of saccadic and smooth-pursuit eye movements in children with learning disorders.(8), 579–588.

Goto, Y., Hatakeyama, K., Kitama, T., Sato, Y., Kanemura, H., Aoyagi, K., … Aihara, M. (2009). Saccade eye movements as a quantitative measure of frontostriatal network in children with ADHD.(5), 347–355.

Graziano, P. A., Mcnamara, J. P., Geffken, G. R., & Reid, A. M. (2013). Differentiating co-occurring behavior problems in children with ADHD: Patterns of emotional reactivity and executive functioning.(3), 249–260.

Jarrett, M. A., & Ollendick, T. H. (2008). A conceptual review of the comorbidity of attention-deficit/hyperactivity disorder and anxiety: Implications for future research and practice.(7), 1266–1280.

Jonkman, L. M., van Melis, J. J. M., Kemner, C., & Markus, C. R. (2007). Methylphenidate improves deficient error evaluation in children with ADHD: An event-related brain potential study.(3), 217–229.

Kakuszi, B., Tombor, L., Papp, S., Bitter, I., & Czobor, P. (2016). Altered response-preparation in patients with adult ADHD: A high-density ERP study., 57–66.

Kaplan, H. I., Sadock, B. J., & Grebb, J. A. (1994).. Williams & Wilkins Co.

King, J. A., Colla, M., Brass, M., Heuser, I., & von Cramon, D. Y. (2007). Inefficient cognitive control in adult ADHD: Evidence from trial-by-trial Stroop test and cued task switching performance.(1), 42–42.

Klein, C. H., Raschke, A., & Brandenbusch, A. (2003). Development of pro- and antisaccades in children with attention-deficit hyperactivity disorder (ADHD) and healthy controls.(1), 17–28.

Lansbergen, M. M., Kenemans, J. L., & van Engeland, H. (2007). Stroop interference and attention-deficit/hyperactivity disorder: A review and meta-analysis.(2), 251–262.

LeRoy, A., Jacova, C., & Young, C. (2019). Neuropsychological performance patterns of adult ADHD subtypes.(10), 1136–1147.

López-Martín, S., Albert, J., Fernández-Jaén, A., & Carretié, L. (2013). Emotional distraction in boys with ADHD: Neural and behavioral correlates.(1), 10–20.

Miranda, A., Berenguer, C., Roselló, B., Baixauli, I., & Colomer, C. (2017). Social cognition in children with high-functioningautism spectrum disorder and attention-deficit/hyperactivity disorder. associations with executive functions., 1035.

Muhle-Karbe, P. S., Jiang, J., & Egner, T. (2017). Causal evidence for learning-dependent frontal-lobe contributions to cognitive control.,(4), 962–973.

Müller, H. J., & Rabbitt, P. M. A. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption.(2), 315–330.

Munoz, D. P., & Everling, S. (2004). Look away: The anti- saccade task and the voluntary control of eye movement.(3), 218–228.

Nesterovsky, I., Shalev, L., Luria, R., Saar, K., Stern, P., Styr, B., & Mevorach, C. (2015). Electrophysiological evidence for decreased top-down attentional control in adults with ADHD.(12), 1337.

Oliveri, M., Zhaoping, L., Mangano, G. R., Turriziani, P., Smirni, D., & Cipolotti, L. (2010). Facilitation of bottom-up feature detection following rTMS-interference of the right parietal cortex.(4), 1003–1010.

Parton, A., Nachev, P., Hodgson, T. L., Mort, D., Thomas, D., Ordidge, R., ... Husain, M. (2007). Role of the human supplementary eye field in the control of saccadic eye movements.(5), 997–1008.

Rosch, K. S., Crocetti, D., Hirabayashi, K., Denckla, M. B., Mostofsky, S. H., & Mahone, E. M. (2018). Reduced subcortical volumes among preschool-age girls and boys with ADHD., 67–74.

Rubia, K., Norman, L., Lukito, S., Carlisi, C., Mataix-Cols, D., & Radua, J. (2016). Top-down control in ADHD: Disorder- specificity relative to CD, autism and OCD.(2), S149–S150.

Rubia, K., Smith, A. B., Brammer, M. J., Toone, B., & Taylor, E. (2005). Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD.(6), 1067–1075.

Ryan, M., Jacobson, L. A., Hague, C., Bellows, A., Denckla, M. B., & Mahone, E. M. (2016). Rapid automatized naming (RAN) in children with ADHD: An ex-gaussian analysis.(5), 571–587.

Sergeant, J. (2004). Eunethydis–searching for valid aetiological candidates of attention-deficit hyperactivity disorder or hyperkinetic disorder.(1), i43–i49.

Sergeant, J. A. (2005). Modeling attention-deficit/hyperactivity disorder: A critical appraisal of the cognitive-energetic model.(11), 1248–1255.

Shafer, A. T., Matveychuk, D., Penney, T., O'Hare, A. J., Stokes, J., & Dolcos, F. (2012). Processing of emotional distraction is both automatic and modulated by attention: Evidence from an event-related fMRI investigation.(5), 1233–1252.

Siciliano, R. E., Madden, D. J., Tallman, C. W., Boylan, M. A., Kirste, I., Monge, Z. A., ... Wang, L., H. (2017). Task difficulty modulates brain activation in the emotional oddball task., 74–86.

Tsujimoto, S., Yasumura, A., Yamashita, Y., Torii, M., Kaga, M., & Inagaki, M. (2013). Increased prefrontal oxygenation related to distractor-resistant working memory in children with attention-deficit/hyperactivity disorder (ADHD).(5), 678–688.

van der Meere, J., Gunning, B., & Stemerdink, N. (1999). The effect of methylphenidate and clonidine on response inhibition and state regulation in children with ADHD.(2), 291–298.

Wang, Y. H., Wang, Y. F., & Zhou, X. L. (2006). Conflict control at different periods of processing in children with two subtypes of ADHD.(2), 181–188.

[王勇慧, 王玉凤, 周晓林. (2006). 注意缺陷多动障碍儿童在不同加工阶段的干扰控制.(2), 181–188.]

Wang, Y. H., Zhou, X. L., Wang, Y. F., & Zhang, Y. X. (2005). Response inhibition in two subtypes of children with ADHD.(2), 178–188.

[王勇慧, 周晓林, 王玉凤, 张亚旭. (2005). 两种亚型ADHD儿童在停止信号任务中的反应抑制.(2), 178–188.]

Xu, J. T., Jiang, C., Gao, Y., Liu, Q. G., Jia, S., H., & Zhou, L. (2011). The research of DSM-IV SCID in psychological autopsy.,(4), 201–204.

[许俊亭, 姜潮, 高岩, 刘启贵, 贾树华, 周莉. (2011). DSM-IV临床定式访谈(SCID)在心理解剖诊断中的应用.,(4), 201–204.]

Xu, Y., Zhou, X. L., &Wang, Y. F. (2006). The covert orienting deficit in children with two subtypes of attention-deficits hyperactivity disorder.(5), 709–717.

[徐岩, 周晓林, 王玉凤. (2006). 两亚型注意缺陷多动障碍(ADHD)儿童的内隐注意定向.(5), 709–717.]

Song, Y., & Hakoda, Y. (2011). An asymmetric stroop/reverse- stroop interference phenomenon in ADHD.(6), 499–505.

Adult attention deficit hyperactivity disorder in internal and external conflicts: Evidence from Saccade task

LI Yaojin; ZHANG Wei; FU Bei; ZHOU Bingping

(School of Psychology, Central China Normal University, Key Laboratory of Human Development and Mental Health of Hubei Province, Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan 430079, China)

Attention-deficit/hyperactivity disorder (ADHD) is a childhood onset disorder with the cardinal features of inattention, impulsivity, and hyperactivity. And the core symptoms of ADHD in childhood will gradually change into more serious neurological disorders in adulthood. Thus, it is necessary to study the pathological and physiological mechanisms of adult ADHD patients. Compared with normal people, patients with ADHD have stronger exogenous stimulation drive ability and weaker endogenous control ability. Therefore, the reason why ADHD in adults is susceptible to external interference is whether the level of response generated exogenous stimulation is too strong or the level of response generated by endogenous driving is too weak.

Twenty-six adult ADHD patients were screened by adult ADHD self-reporting scale (ASRS) as ADHD group, and 25 normal adult participants were selected as control group. Three experimental paradigms of saccade (reverse saccade, memory-oriented saccade and visual-oriented saccade) were used to investigate the ability of endogenous and exogenous saccade conversion and the ability of endogenous and exogenous saccade production and maintenance.

The results showed that the response level of adult ADHD patients to endogenous stimulation was lower than that of exogenous stimulation in reverse saccade experiment; in memory-oriented saccade experiment, the ability of adult ADHD patients to produce and maintain endogenous saccade was not significantly lower than that of normal subjects; in visual-oriented saccade experiment, the ability of adult ADHD to produce and maintain exogenous saccades was significantly better than that of normal subjects.

Therefore, the level of response of adult ADHD from endogenous stimuli is indeed lower than that produced by exogenous stimuli. Adult ADHD is susceptible to exogenous visual interference and is more likely to be caused by excessive levels of response from exogenous stimuli.

adult attention deficit hyperactivity disorder; saccade; exogenous and endogenous stimulation; conflict of stimulation response level

2019-07-11

* 华中师范大学中央高校基本科研业务费专项(CCNU2019, CCNUTE2018-10)项目资助。

张微, E-mail: zhangwei2008@mail.ccnu.edu.cn

R395; B842

猜你喜欢
外源成人导向
外源钼对水稻产量形成及氮素利用的影响
坚持服务导向 凝聚侨心侨力
外源NO缓解黄瓜幼苗低温伤害的效果
浅析诱导公式的导向功能
养大成人
基于任务为导向的长文教学策略
犬只导向炮
神奇的太阳
外源现代中的公正问题
The Doll’s House——成人世界的缩微模型