胡晓磐,李世昌*,孙 朋
(1.华东师范大学“青少年健康评价与运动干预”教育部重点实验室,上海 200241;2.华东师范大学 体育与健康学院,上海 200241)
随着系统生物学、骨分子生物学和遗传学研究的发展,骨形成或骨吸收不仅受激素、代谢和机械应力的影响,还可能与表观遗传(epigenetic)有关(Amjadi-Moheb et al.,2019)。表观遗传在不改变核酸序列的情况下,使基因表达发生可遗传变化,以DNA甲基化(DNA methylation)、组蛋白修饰(histone modifications)和非编码 RNA(non-coding RNAs,ncRNAs)3种方式为主(Letarouilly et al.,2019)(表1)。而与基因突变有所不同的是,表观遗传的改变具有可逆性(张严焱等,2018)。有研究发现,身体活动通过影响相关基因的表观遗传修饰,从而起到预防和改善病症的效用(Zimmer et al.,2016)(图1),这意味着运动作为外源性刺激,可充当环境表观遗传调制器,在不影响DNA编码的前提下,通过直接或间接作用于骨组织细胞,发挥提升骨量、骨密度,改善骨强度等骨骼机械性能的功能。这可能是引起基因组一致的同卵双生子在不同环境下呈现出身高及骨健康状况差异的原因,也是解释了运动影响骨质变化的潜在机制。基于此,本文综述国内外运动对骨质影响的表观遗传学研究进展,并系统阐述其中表观遗传的可能机制。
骨质的强健与遗传及环境因素密切相关,主要候选基因涉及钙磷代谢调节激素、性激素、细胞因子及其相应的受体基因和I型胶原蛋白基因(张奎等,2017;Qi et al.,2003);不益于骨健康的高危环境因素则包括营养失衡、钙摄入不足、缺乏运动和不良的生活习惯等(Bloomfield,2003)。DNA甲基化正是在遗传-环境-骨质变化范畴内,由基因和外界环境的相互作用,引起生命周期内骨质改变的表观遗传调控方式之一。研究发现,妊娠期妇女缺失维生素D将导致CYP2R1和CYP24A1等基因位点高甲基化,使子代基因沉默,造成后代整体表观遗传程序功能障碍(Michou,2018;Pike et al.,2015;Von et al.,2018)(图2),由此可解释孕期维生素D不足与胎儿骨发育迟缓和儿童期骨量减损的联系。Wang等(2018)发现,骨质疏松(osteoporosis,OP)患者骨组织内促破骨细胞分化的核因子kB受体活化因子配体(receptor activator of nuclear factor-kB ligand,RANKL)呈基因启动子低甲基化,而抑制破骨细胞生成的骨保护素(osteoprotegerin,OPG)表现为启动子高甲基化,使得RANKL高表达而OPG不足。这与正常骨组织中RANKL/OPG通路状态相反,反映出原发性骨质疏松所表现的RANKL/OPG通路紊乱,可能是由于DNA甲基化状态改变所致。
组蛋白乙酰化在4种核心组蛋白中均可发生,是表观遗传组蛋白修饰的研究热点(王维 等,2012;Grunstein,1997)。催化组蛋白乙酰化修饰的酶包括可激活转录的组蛋白乙酰化转移酶(histone/lysine acetyltransferases,HATs/KATs)(Lutter et al.,1992)和功能相反的组蛋白去乙酰化酶(histone/lysine deacetylases,HDACs/KDACs)(Taunton et al.,1996)。染色质免疫沉淀显示,成骨细胞基因启动子区域存在p300和CREB结合蛋白(CREB binding protein,CBP)2种HATs大分子(Gordon et al.,2011),可诱导25-羟维生素D3-24-羟基化酶(25-hydroxyvitamin D3-24-hydroxylase,Cyp24)基因的启动子发生组蛋白H4乙酰化,激活成骨基因转录(Kim et al.,2005)。p300/CBP同样有助于维持巨噬细胞集落刺激因子(macrophage colonystimulating factor,M-CSF)和细胞核因子C1(nuclear factor of activated T cells C1,NFATc1)的高乙酰化状态,促破骨细胞生成(Asagiri et al.,2005;Weilbaecher et al.,2001)。Cantley等(2017)使用组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitor,HDACI)探究高度乙酰化对成骨细胞和破骨细胞分化及基因表达的影响,发现HDACI有助于成骨细胞(osteoblast,OB)成熟及基质矿化(Schroeder et al.,2007),但也会介导OB内核因子kB受体活化因子配体(RANKL)启动子区域乙酰化,继而激活破骨细胞(osteoclast,OC),使受试者骨密度降低,骨折风险增高(McGee-Lawrence et al.,2011)。以上研究表明,乙酰化修饰可灵活地影响染色质结构及功能,在成骨和破骨生成过程中均发挥重要作用。同时,作为骨相关基因表观遗传的直接或共调控方式,具备相当的动态性和复杂性。
在非编码RNA中,长度约19~24个核苷酸的microRNA(miRNA)在机体生命活动过程中的效应范围十分广泛,可作用于约30%的人类基因组,同时具有较高稳定性,因而其表达水平可成为监测和诊断骨代谢疾病的最佳生物标志物。目前已检测出多达80余种与骨密度(bone mineral density,BMD)、骨折和骨质疏松症密切相关 的 特 异 性 miRNA(Cheng et al.,2018;Scimeca et al.,2017)(表2),如过表达miR-338-3p会通过靶向Runt相关转录因子2(Runt-related transcription factor 2,Runx2)和成纤维细胞生长因子受体2(fibroblast growth factor receptor 2,FGFR2),抑制Osterix等骨形成转录因子导致骨质疏松(Liu et al.,2014)。但有些miRNA分子的作用功能尚未得到统一定论(Meng et al.,2015;Wei et al.,2017),如 Panach等(2015)发现,骨质疏松性骨折患者血清中miR-21-5p与I型胶原羧基末端肽CTX(骨吸收标志物)水平存在很强相关性;Yavropoulou等(2017)的研究指出,健康对照组人群的miR-21-5p水平高于骨质疏松患者。样本量大小、研究对象等因素会影响最终的研究结论,同时miRNA在不同骨组织细胞乃至各发育分化阶段的功能是否存在差异,以及骨折等改变骨稳态的因素是否会干扰miRNA的作用方式等问题有待研究证明。此外,循环血液中动态变化的miRNA在运动应激及逐渐适应过程中同样呈现差异性表达,如有氧耐力显著上调miR-15a和miR-199a水平,急性力竭运动使血液中miR-146a和miR-222显著升高,因此也可将这些血液中的miRNA作为反映训练效果的分子标志物(Ostanek et al.,2018)。
对运动改善骨质代谢原因的探究长期集中在机械负荷刺激对骨量、骨细胞和骨内环境作用的细胞分子机制上(Andreoli et al.,2012;Ehlert et al.,2013),并逐步明确运动通过调节骨相关激素、细胞因子和信号转导的作用途径。但运动强度、时长、频率、项目种类以及实验对象不一致所带来的异质性,使得现有的研究成果偏重于从运动改善骨生长代谢相关生化指标的角度阐释运动对骨质的积极影响,这在一定程度上限制了对运动健骨潜在机制的思考模式。随着表观遗传概念渗入骨代谢研究领域,Rubin等(1990)运用表观遗传概念说明了力学环境影响骨骼形态方式。尽管研究中并没有对具体的表观遗传修饰途径作详细叙述,但指出在器官水平上,功能性身体活动(functional activity)所产生的机械应力可以被看作为一个有效的表观遗传参数,经由组织水平转换为对应的骨力学参数后,在细胞水平上再转化为相应的生化信号,继而调节骨骼形态以适应先前的功能性机械应力。Tumer(1992)从表观遗传凭借转化生长因子β(transforming growth factor β,TGFβ)、胰岛素样生长因子(insulin-like growth factor,IGF)和前列腺素E2(prostaglandin E2,PGE2)对骨骼系统产生正反馈和促分化调控的角度,认为表观遗传模式与Wolff定律所持有的骨力学适应性负反馈调控理念互为补充。了解运动对骨质影响的表观遗传调控机制,有利于丰富和完善运动健骨理论,同时对认识骨代谢调控、骨相关疾病的预防和诊断具有一定的学术价值。
缺乏身体锻炼或久坐不动的生活方式会增加人体罹患骨代谢性疾病的风险,体育运动益于骨骼强健,这一点在长期接受冲击性机械刺激训练的运动员的骨密度含量显著高于常人中得以验证(Valente et al.,2018)。即使无法达到高水平的骨密度值,运动也会从表观遗传层面对不同性别、年龄段群体各组织的DNA甲基化程度产生显著效应,尤以40岁以上人群最为明显(Nakajima et al.,2010;Rönn et al.,2013)。尽管与运动相关的DNA甲基化变化数量巨大(Reimand et al.,2016),也有研究论证了运动引起的基因启动子甲基化改变,对血细胞(White et al.,2013)、骨骼肌(He et al.,2018;Kanzleiter et al.,2015)、脑组 织(Rodrigues et al.,2015)、脂 肪 组 织(Rönn et al.,2013)、肿瘤(Bryan et al.,2013)以及配子(Denham et al.,2015)产生影响。但未见有运动影响骨组织DNA甲基化的直接研究文献。但通过对245名10~13岁芬兰女青少年的雌激素受体α(estrogen receptor α,ERα)基因PvuII多态性和骨质量、骨形态进行分析后发现,每周体育活动时间超过3 h,对于杂合子基因型(Pp)个体的骨质量、骨密度及皮质骨厚度均有显著提升效果;而纯合子基因型(PP和pp)的上述骨指标不会因运动量的增加出现明显变化。这说明骨质状况是基因和环境共同作用的结果,而运动可借助ERα基因PvuII多态性在一定程度上弥补杂合子基因型个体“先天不足”的骨质状态(Suuriniemi et al.,2004)。
实际上,两性达到峰值骨量都需要雌激素(estrogen)的参与,也需要由ERα介导完成;ERα在结合雌激素反应元件(estrogen response element,ERE)后激活靶基因转录,影响骨的成熟和矿化。在成骨细胞中,ERα基因的表达主要与远端F区启动子CpG岛甲基化相关,并会因雌激素增多而降低甲基化程度(Penolazzi et al.,2004;Tübel et al.,2016);此外,运动可通过提升绝经期女性雌激素水平来改善骨质(Gavin et al.,2018;Stanton et al.,2018)。基于成骨细胞ERα基因在雌激素作用下发生的启动子甲基化状态改变,以及适量运动负荷与机体雌激素水平对骨质的保护作用,推测出运动可能通过直接或间接地改变ERα基因甲基化水平促成骨细胞正向生成。
表观遗传修饰中,组蛋白去乙酰化状态改变同样影响骨重塑过程。以III类组蛋白去乙酰化酶(HDAC-III)家族中的长寿蛋白Sirtuins(SIRTs)为例,人体7种Sirtuin蛋白(Sirt1-7)可依靠辅酶烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)调节多种蛋白的乙酰化修饰或ADP核糖基修饰。体育活动可通过提高SIRTs活性,预防因衰老而产生的代谢性疾病(Lanza et al.,2008)。其中,Sirt1是细胞衰老、能量代谢和骨骼重塑3个环节的交汇点(杨宜锜等,2019),可去乙酰化调节维持细胞干性的关键转录因子SOX2(sex determining region Y-box 2),进而加快终末分化细胞重编效率,获得与骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)同等的多向分化潜力(Mu et al.,2015);当Sirt1表达受抑时,会诱导BMSCs中的SOX2发生乙酰化和泛素化,将其向核外输出后降解,严重阻遏BMSCs的增殖和向成骨分化的能力(Yoon et al.,2014)。此外,Sirt1还可直接与Runx2结合,促 BMSCs成骨并抑制其向脂肪分化(Bäckesjö et al.,2006;Tseng et al.,2011);激活单磷酸腺苷活化蛋白激酶[adenosine 5’-monophosphate(AMP)-activated protein kinase,AMPK]限制核因子κB抑制蛋白(inhibitor of NF-κB,IκB),下调核因子-κB(nuclear factor-κB,NF-κB)活性抑制骨吸收(Katto et al.,2013;Shakibaei et al.,2011);使骨硬化蛋白基因(sclerostin,SOST)启动子组蛋白H3第9位赖氨酸残基去乙酰化,阻遏SOST负向调控成骨细胞的功能(Cohenkfir et al.,2011)。在运动能否通过上调Sirt1促进骨质代谢的研究中指出,长期规律性体育活动可上调Sirt1活性,如8周的跑台运动激活Sirt1和叉头转录因子FOXO3a(forkhead box O3a),形成 Sirt1/FOXO3a活性复合物,恢复生长阻滞与DNA损伤基因(growth arrest and DNA damage,GADDA45a)、锰超氧化物歧化酶(Mn superoxide dismutase,MnSOD)和细胞周期蛋白 D2(Cyclin D2)的含量,抑制细胞凋亡并容许DNA修复,以延缓衰老进程(Ferrara et al.,2008)。
耐力运动可上调骨骼肌Sirt1表达量(Suwa et al.,2008),同时去乙酰化激活过氧化物酶体增殖活化受体γ辅助活化因子1α(αsubunit of peroxisome proliferators-activated receptor-γcoactivator-1,PGC-1α),改善衰老引发的线粒体生物发生和氧化能力减退(Koltai et al.,2012)。值得注意的是,PGC-1α可结合雌激素相关受体α(estrogen-related receptorα,ERRα),增强核受体转录激活,参与雌激素调节的骨代谢;急性和有氧运动均可改善女性性激素水平(Stanton et al.,2018)。基于运动提高Sirt1及雌激素水平的特点,结合体力活动提高NAD+信号分子水平,激活代谢传感器AMP依赖的蛋白激酶[Adenosine 5’-monophosphate(AMP)-activated protein kinase,AMPK]及Sirt1,引起靶蛋白磷酸化和去乙酰化的表观遗传改变,促进组织氧化重塑的作用(Jäger et al.,2007)。推测运动可通过作用于Sirt1上游因子,借助NAD+/AMPK/Sirt1/PGC-1α/雌激素相关受体α通路,调节表观遗传修饰,刺激骨代谢靶基因的生物合成,改善骨质疏松状态(图3)。
有研究表明,力学刺激变化可通过调控miRNA改变骨吸收、骨形成方向,这主要是依靠对机械敏感型因子miR-103a的激活或抑制实现。在失去力学刺激的状态下,miR-103a的过表达将严重降低成骨分化主要转录因子Runx2含量;而恢复力学刺激,可抑制miR-103a水平并上调Runx2蛋白表达(Bin et al.,2015;Yuan et al.,2017)。Sun等(2015)发现,微重力状态下miR-103表达的上调会通过抑制L型电压门控钙通道(L-type Ca2+channel,LTCC)Cav1.2的表达,阻碍成骨细胞增殖。miR-154-5p可抑制调控成骨分化的Rho/Rho激酶(Rho-associated kinase,ROCK)通路,并靶向Wnt11以阻碍脂肪来源间充质干细胞(adipose-derived mesenchymal stem cells,ADSCs)向成骨分化;通过增加机械应力下调miR-154-5p,激活Wnt/平面细胞极性(planar cell polarity,PCP)通路促进ADSCs成骨(Li et al.,2015)。动物实验结果显示,跑台运动在提高皮质骨密度的同时(曹鹏,2009),可诱导C57BL/6小鼠胫骨内37种miRNA表达差异,其中,miR-let-7a/d/f/i-5p在运动组中表达下调;2周的重力负荷使小鼠胫骨中miR-20a和miR-92a表达量高出安静组1.3和2.1倍(Zhou et al.,2014)。当关键miRNA缺失时,骨组织细胞对机械应激刺激的反应不再敏感。Mohan等(2015)在破坏成骨细胞内miR-17-92簇后,发现骨对机械应变的反应明显减弱,同时EIk3、Runx2和骨膜基因表达减少。因此,运动可能通过调控miRNA防治废用性骨丢失(Domanska et al.,2019;Li et al.,2015)。尽管miRNA并非机械刺激下唯一调节骨代谢的因子,但其在机械应力下会发生明显改变,并可通过调节成骨因子或骨吸收因子表达,来加强机械负荷对骨形成的积极作用。然而,训练方案设计的项目强度和总持续时长可能是决定miRNA变化的关键要素(马涛等,2011)。Farsani等(2019)使用4种运动方案(中、高强度耐力和中、高强度抗阻训练)对23月龄Wistar大鼠进行为期8周的干预后发现,miR-133a、miR-103a与miR-204水平在中、高强度抗阻训练中有所下降,但这3种直接靶向Runx2的成骨分化负调控因子的表达并没有因运动介入而受到明显抑制。
由此,建议老年群体采用中、高强度抗阻训练方案以激活骨重建,并表示8周的干预时长还不足以引起miRNA变化,应坚持长期(≥6个月)规律性体育锻炼才有可能从中获益。事实上,庞大而复杂的非编码RNA调控网络,其全部信息和功能并不是独立或单向的,如已证实lncRNA和miRNA同样参与到对DNA甲基化酶和组蛋白修饰的调控过程中,引起DNA甲基化及染色质重塑改变,从而决定细胞骨髓间充质干细胞分化方向(图4)。解析骨组织内整体或特定的非编码RNA分子功能信息,以及其在运动过程中的变化情况,将有助于更加全面详实地阐明运动调控骨质代谢的表观遗传变化机制,并为骨代谢性疾病的发生提供全新的表观遗传调控视角。
图4 调节人体骨髓间充质干细胞分化的表观遗传机制(Letarouilly et al.,2019)Figure 4.Epigenetic Mechanisms in Regulating Preferential Human BMSCs Differentiation
一直以来,相关研究都在从力学刺激下的骨相关因子、激素、信号通路变化等方面论证适量运动有益于维持骨稳态,并大力推广运动科学健骨的理念,而表观遗传正为运动这一外源性刺激引起的骨相关基因响应内外环境变化,并呈现出时间和空间上的表达调控改变,提供了最新探究角度。近年来,相关研究为骨健康和运动医学领域积累了一定的表观遗传学资料,通过影响基因的表观遗传修饰,影响骨相关基因的表达,可能是运动改善骨质的良性机制之一。尽管将表观遗传修饰、运动和骨质代谢直接联系起来的研究并不多见,但通过对文献的整理可以看出,运动能显著改变DNA甲基化水平、组蛋白修饰状态及非编码RNA的表达,当中的部分表观遗传修饰变化与骨质代谢标志物、信号通路和关键基因的表达密切相关。然而,关于表观遗传的诸多疑问仍未解决,如机体表型与代谢性疾病的发生由基因遗传和表观遗传共同决定,应如何区分和量化两者影响程度的多寡;不同运动项目、时长、强度和频次与骨相关表观遗传修饰变化之间的关联等有待长期实验进行验证。同时,运动对干细胞表观遗传修饰的影响或将成为运动医学领域的新兴课题。未来还可将慢性骨代谢疾病与生活环境、生活方式等表观遗传修饰的决定因素相联系,从诱因入手以减少骨疾病发生的可能。