羟基红花黄色素A改善心肌缺血再灌注损伤研究进展

2020-05-07 01:0331
中国民族民间医药 2020年4期
关键词:红花内皮细胞内皮

3 1

1.黑龙江中医药大学药学院,黑龙江 哈尔滨 150040;2.中国中医科学院中药研究所,北京 100700;3.天津中医药大学研究生院,天津 301617

急性心肌梗塞是冠状动脉的主要分支突然受到阻塞而导致心肌细胞缺血缺氧从而诱发的心肌坏死[1]。自上世纪80年代以来对于急性缺血性心脏病的治疗迈入了一个新的时代,即恢复血流量并快速通过心肌缺血的区域,可通过再灌注方式进行治疗,此方法可使死亡率减半。然而再灌注会进一步导致并发症,如心脏收缩功能异常和节律性减少,除此之外,有实验证据表明再灌注可导致不可逆的损伤如细胞坏死和细胞凋亡,目前在临床上存在几种心肌缺血再灌注损伤的类型,其中包括心肌顿抑、微血管阻塞(MVO)以及致死性心肌缺血再灌注损伤,其主要发病机制为氧化应激损伤、细胞内钙超载[2]、内皮功能障碍、血管重塑[3]、细胞凋亡[4]、线粒体通透性转换孔(MPTP)异常开放[5]等。虽然现有PCI技术及相关溶栓药物的药效在不断完善,但心肌缺血再灌注损伤仍然是世界上高致死率的疾病,目前缺少有效的预防心肌再灌注损伤的手段[6]。因此,开发新型具有改善心律失常、延缓坏死以及限制缺血/再灌注期间梗塞程度的心肌保护药物以改善心肌功能,在临床上的研究具有重大意义。

红花(CarthamustinctoriusL.)别名草红花、刺红花。因其花呈红色,叶颇似蓝靛色又名红蓝花,又因其花中掺杂黄色而称黄蓝花[7]。红花为菊科、红花属植物的干燥花,具有活血化瘀的功效,常用于治疗高血压、冠心病、脑血栓等疾病[8]。目前已从红花中分离出黄酮、生物碱、多糖等化学成分[9],其中羟基红花黄色素A(HSYA)为从红花的花瓣中提取出的黄酮类化合物,目前作为红花质量评价的标志物[10],是其主要活性成分之一。近年来,国内外对HSYA进行了广泛研究,其具有保护作用,也具有抗氧化应激[11]、抗肿瘤[12]、抗炎[13]、抗细胞凋亡[14]等作用。本文就HSYA在心肌缺血再灌注中的药理作用及作用机制进行了归纳整理,旨在为后续HSYA在临床上的开发利用提供参考依据。

1 羟基红花黄色素A在心肌缺血再灌注中的药理作用

1.1 抑制氧化应激损伤 HSYA可以较好地抑制缺血再灌注引起的心肌氧化应激损伤。氧化应激(OxidativeStress,OS)是指体内氧化与抗氧化作用失衡,氧自由基的形成、增加以及抗氧化防御活性的降低是影响氧化还原状态的重要因素,破坏的氧化还原状态将触发氧化应激反应[15]。超氧化物歧化酶(SOD)和丙二醛(MDA)是OS的常见指标。SOD可分解O2和H2O2,而MDA则是脂质过氧化的产物[16]。研究表明HSYA可以通过激活Janus激酶(JAK)/信号转导和转录激活因子(STAT)途径缓解I/R损伤。JAK/STAT信号通路与氧化应激反应基因表达相关[17]。Dong[18]等在动物体内缺血再灌注实验中观察到HSYA经处理可阻止JAK2的磷酸化,并且降低下游STAT1的磷酸化水平,而在体外实验中发现HSYA可降低MDA及ROS的含量,并且增加SOD含量。血红素加氧酶-1(HO-1)是一种诱导型酶,具有较强的抗氧化能力。转录因子NF-E2相关因子2(Nrf2)可上调保护细胞转录的基因,降低氧化应激造成的伤害。GUO[19]等通过建立心肌缺血/再灌注(MI/R)体内大鼠模型以及体外缺氧模型,发现HSYA可增强HO-1的表达、蛋白激酶B(Akt)的磷酸化及转录因子NF-E2相关因子2(Nrf2)的易位,通过Akt/Nrf2/HO-1信号通路的激活对心脏起到一定的保护作用。在心肌缺血后的再灌注起始阶段电子传递链被重新激活产生活性氧(ROS)。ROS通过多种机制诱导酶变性并通过脂质过氧化损害细胞膜造成氧化损伤[20],因此过量的ROS产生可导致细胞功能障碍和脂质过氧化,过氧化物酶体增殖物激活受体γ辅助激活因子-1α(PGC-1α)可抑制ROS产生,被用作ROS抑制剂,HSYA经预处理可增强PGC-1α和Nrf2的表达从而减轻线粒体ROS依赖性氧化应激,以达到预防心肌损伤的目的[21],综上可知心肌缺血再灌与氧化应激损伤密切相关,其信号通路关联见图1。

图1 心肌缺血再灌与氧化应激损伤信号通路关联图

1.2 抑制Ca2+超载及线粒体通透性转换孔(MPTP)开放

1.2.1 抑制Ca2+超载 在急性心肌缺血期间,细胞因缺氧会将代谢转换为无氧呼吸,从而导致乳酸的产生并促使细胞内pH下降,并诱导Na+-H +交换剂挤出H+致使细胞内Na+过载,Na+过载激活Na+-Ca2+交换剂以反向起作用导致细胞内Ca2+超载。通过实验发现HSYA可通过调控Ca2+改善心脏收缩性和舒张性,改善心功能不全的情况,其病理机制为在再灌注期间,细胞外pH迅速恢复而最初细胞内pH仍然保持酸性,并且该pH梯度会破坏Ca2+稳态从而使心肌细胞受到损伤,故而HSYA可通过调控Ca2+保护受损心肌[22-23]。

1.2.2 抑制线粒体通透性转换孔(MPTP)开放 已有研究证实在心肌再灌注开始时,使用已知的MPTP抑制剂环孢菌素A来防止MPTP在再灌注时开放,可以使心肌梗死面积减小40%-50%[24]。MPTP是线粒体内膜的非选择性通道,MPTP开放会导致线粒体膜去极化和氧化磷酸化的解偶联,线粒体肿胀及细胞死亡。MPTP开放一般有两种方式,一种是在心肌再灌注期间因质膜被破坏,线粒体再激活加剧。线粒体再激活会促使线粒体膜电位的恢复,并驱动Ca2+经过线粒体Ca2+单向转运体进入线粒体,最终诱导MPTP开放[25],另一种为ROS直接诱导开放[26]。HSYA可通过抑制线粒体通透性转换孔开放来保护心肌免受缺血再灌注损伤,雄性大鼠缺血30分钟并将其心脏在Langendorff装置上灌注120分钟后,在分离的线粒体中可观察到Ca2+诱导的线粒体肿胀并可检测到线粒体膜去极化。而在缺血前施加HSYA后观察到线粒体肿胀受到显著抑制,并且明显改善了线粒体膜去极化[27]。线粒体功能障碍可直接诱导心肌细胞损伤,其中由蛋白激酶B(Akt)调节的己糖激酶II(HKII)在调节心肌细胞线粒体功能中起关键作用[28]。在H/R细胞模型中,HSYA可以激活Akt磷酸化,上调p-Akt的表达水平,同时明显提高了己糖激酶II的表达。HSYA可通过靶向Akt/HKII途径来保护缺血再灌注损伤的心肌细胞[29]。图2为HSYA与MPTP开放关联图。

图2 再灌注后HSYA与MPTP关联图

1.3 抑制细胞凋亡 已有研究显示缺失促凋亡蛋白或增加抗凋亡蛋白的表达可减少缺血再灌注介导的细胞死亡。细胞凋亡后的死亡途径一般是通过激活切割DNA和其他细胞组分的半胱天冬酶而发生[30]。细胞凋亡机制受许多蛋白质调节,如Bcl-2家族(ced-9,Bcl-w,Bcl-2,Bcl-xl与Bax,Bcl-xS,和Bak等),可以抑制或促进细胞凋亡,Bcl-2家族分为两类:B细胞淋巴瘤-2(Bcl-2)从属于抗凋亡基因,Bcl-2相关的X蛋白(Bax)从属于促凋亡基因[31]。缺氧诱导因子-1a(HIF-1a)是细胞对缺氧反应的关键介质并与细胞凋亡有关[32]。研究表明HSYA可上调人脐静脉内皮细胞(HUVEC)在缺血再灌环境下Bcl-2/Bax蛋白表达比例,增强HIF-1a蛋白积累及其转录活性。提高细胞在缺血再灌条件下的存活率[33]。过氧化物酶体增殖物激活受体-γ(PPAR-γ)属于核激素受体转录因子家族并且在缺血性损伤区高表达,参与抗缺血再灌注损伤的病理过程[34]。通过结扎大鼠冠状动脉前降支诱导心肌缺血性损伤的实验模型发现,HSYA可增加Bcl-2/Bax的表达水平并抑制PPAR-γ的表达,对心肌缺血发挥保护作用[35]。HSYA抑制细胞凋亡途径见图3。

图3 HSYA与细胞凋亡关联图

1.4 抑制血管内皮细胞损伤 内皮细胞在调节组织对缺血性损伤的反应中起重要作用,组织缺氧和缺血可导致血管内皮细胞的损伤。血管内皮细胞可能在缺血期间受损并死亡,导致内皮屏障功能失效以及血栓和组织水肿的形成。这种血管疾病加重了缺血性损伤的后果,并使局部中断血液循环的一些外科手术的结果复杂化。研究实验表明,预防血管内皮细胞损伤可能会改善缺血患者的血管生成[36]。因此,在缺血期间保护血管内皮细胞免受损伤及有效抑制细胞死亡将成为血管疾病的治疗重心。Tie-2是一种内皮特异性受体酪氨酸激酶,其配体血管生成素已被认定为生理和病理生理条件下的关键血管生成介质[37]。血管生成素1(Ang1)是与Tie2结合并诱导Tie-2磷酸化的配体。已有研究证实Ang1可以激活磷脂酰肌醇3′-激酶/Akt和丝裂原活化蛋白激酶通路,调节内皮细胞的存活和迁移,促进血管生成[38]。Ang1可促进心肌缺血新生血管形成[39]。已显示Ang1/Tie-2信号传导的破坏会损害血管成熟并破坏发育中胚胎中的血管形成[40]。CHEN[41]等通过人脐静脉内皮细胞(HUVEC)体外模型发现HSYA不仅可诱导血管生成素1和Tie-2的表达上升,并且提高Tie-2表达,Akt和细胞外信号调节激酶1/2的磷酸化,表明HSYA可作为血管生成调节剂应用于治疗缺血性疾病。此外,作为新血管形成的两个关键分子调节因子,血管内皮生长因子(VEGF)和基质细胞衍生因子-1(SDF-1)也得到了深入研究。VEGF是研究最多且具特异性的血管生成细胞因子,主要动员骨髓驻留的内皮祖细胞进入外周循环[42],而SDF-1作为主要的趋化因子,对EPC的吸引,迁移和粘附至关重要[43]。内皮祖细胞(EPCs)现今已成为修复缺血心肌的靶点,EPCs激活能够明显促进缺血心肌的新生血管形成,并显著改善心脏功能[44]。有研究表明HSYA可以促进骨髓中EPC的动员并增强其向缺血部位的迁移并且参与心肌梗死后心肌血管的新生,从而改善心肌损伤保护心脏功能。HSYA的这一保护机制是通过诱导HO-1/VEGF/SDF-1信号级联的激活而产生的[45]。缺血再灌注引起的内皮损伤导致血小板活化途径见图4。

图4 缺血再灌注与血管内皮损伤关联图[46]

1.5 抑制炎症反应 缺血及再灌注皆为病理状态,其特征表现为在缺血时期限制对器官的血液供应,随后对器官恢复灌注并伴随再复氧。动脉血液供应的闭塞是由栓子引起的,并进一步导致代谢供应和需求的严重失衡,致使组织缺氧。再灌后血流恢复和复氧通常与组织损伤的恶化和深度炎症反应密切相关[47]。Toll样受体4(TLR4)是模式识别受体之一,在诱导炎症反应中起着至关重要的作用,并在心肌缺血中激活下游信号传导如核因子κB(NF-κB)[48]。TLR4的激活可诱导NF-κB依赖性促炎细胞因子的表达,例如肿瘤坏死因子-α(TNF-α)和白细胞介素1β(IL-1β)[49]。Han[50]等研究表明HSYA可减少炎性细胞因子的过度分泌,下调受损心肌中TLR4和NF-κB的过度表达,从而减轻心肌缺血再灌注损伤的炎症反应,对心肌起到保护作用。

2 讨论

心肌缺血再灌注有多种损伤形式,亦有多种致病原因。其中氧化应激,钙超载,线粒体通透性转换孔(MPTP)开放等研究的较为深入。而HSYA作为红花提取物,可以抑制氧自由基的生成,并且介导Akt/Nrf2/HO-1途径增强抗氧化能力,也可作用于JAK/STAT信号通路发挥其抗氧化应激的作用;HSYA通过两方面对线粒体起到保护作用:一方面是抑制Ca2+可以阻断线粒体通透性转换孔的开放,另一方面是通过抑制ROS的产生保护线粒体。当HSYA作用于受损心肌时,可以促进血管再生,保护血管内皮细胞并介导相应通路,如HO-1/VEGF/SDF-1信号通路,并且可以下调促凋亡表达蛋白从而抑制细胞凋亡。目前对HSYA的临床应用也在逐步扩大,红花黄色素一般作为氯化钠注射剂应用于临床治疗,对心脏类疾病(如心肌梗死、冠心病、心绞痛等)的发生具有治疗作用,羟基红花黄色素A在缺血再灌注方面的临床应用是近年来的研究热点,而大量文献都无法确定药物在缺血再灌注过程中最有效的施用时间,所以HSYA在心肌缺血再灌注期间的预处理及后处理需要更多的实验去考证,以期为后续HSYA的开发利用提供参考依据。

猜你喜欢
红花内皮细胞内皮
有氧运动和精氨酸补充对高血压的干预作用及其与内皮细胞功能的关系
土槿皮乙酸对血管内皮细胞迁移和细胞骨架的影响
红花榜
红花榜
HMGB1基因对高糖诱导的血管内皮细胞损伤的影响
不同浓度镁离子干预对妊娠糖尿病妇女内皮祖细胞的影响
红花榜
红花榜
血管内皮生长因子在肺动脉高压发病机制的研究进展
浅议角膜内皮细胞检查