任晓静 葛楠楠
摘要:运用简化的齐次平衡法(SHB),导出(3+1)维KP-Boussinesq和BKP-Boussinesq方程的非线性变换,借助非线性变换,得到这两个方程的单孤子和双孤子解,丰富了其精确解系。
关键词:KP-Boussinesq方程; BKP-Boussinesq方程; 简化的齐次平衡法; 非线性变换; 孤子解
中图分类号:O175.29
DOI:10.16152/j.cnki.xdxbzr.2020-06-010
Soliton solutions of (3+1)-dimensional KP-Boussinesq andBKP-Boussinesq equations
REN Xiaojing, GE Nannan
(School of Mathematics, Northwest University, Xi′an 710127, China)
Abstract: Using the simplified homogeneous balance method(SHB), the nonlinear transformation of the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations are derived. With the help of nonlinear transformations, the one-soliton and two-soliton solutions of these two equations are obtained, enriching their exact solution system.
Key words: KP-Boussinesq equation; BKP-Boussinesq equation; simplified homogeneous balance; nonlinear transformation; soliton solutions
3 结语
本文借助非线性变换,将求解(3+1)维KP-Boussinesq和BKP-Boussinesq方程转变为求解两个相应的齐二次方程,由于齐二次方程有指数形式的解,把选取的解代入非线性变换,可得这两个方程的单孤子和双孤子解。通过求解方程,可发现该方法简明有效,且每一个非线性变换只对应一个齐二次方程。下一步会对n维对数型的非线性方程进行研究[11-13]。
参考文献:
[1] WAZWAZ A M. Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation[J].Commun Nonlinear Sci Numer Simulat, 2012, 17(2):491-495.
[2] MA W X, XIA T C. Pfaffianized systems for a generalized Kadomtsev-Petviashvili equation[J].Phys Scr, 2013, 87(5):055003.
[3] MA W X, ZHU Z N. Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm[J].Appl Math Comput, 2012,218(24):11871-11879.
[4] WAZWAZ A M, EL-TANTAWY S A. A new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation[J].Nonlinear Dyn, 2016, 84(2):1107-1112.
[5] WAZWAZ A M, EL-TANTAWY S A. Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota′s method[J].Nonlinear Dyn, 2017, 88(4):3017-3021.
[6] SUN B N, WAZWAZ A M. General high-order breathers and rogue waves in the (3+1)-dimensional KP-Boussinesq equation[J].Commun Nonlinear Sci Numer Simulat, 2018, 64:1-13.
[7] YAN X W, TIAN S F, DONG M J, et al. Bcklund transformation,rogue wave solutions and interaction phenomena for a (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation[J].Nonlinear Dyn, 2018, 92(2):709-720.
[8] WANG M L, LI X Z. Simplified homogeneous balance method and its applications to the Whitham-Broer-Kaup model equations[J].J Appl Phys, 2014, 2(8):823-827.
[9] WANG M L, ZHANG J L, LI X Z.Decay mode solutions to cylindrical KP equation[J].Appl Math Lett, 2016, 62:29-34.
[10]WANG M L, LI X Z, ZHANG J L. Two-soliton solution to a generalized KP equation with general variable coefficients[J].Appl Math Lett, 2018, 76: 21-27.
[11]WANG M L, ZHANG J L, LI X Z. N-dimensional Auto-Bcklund transformation and exact solutions to n-dimensional Burgers system[J].Appl Math Lett, 2017, 63:46-52.
[12]WAZWAZ A M. Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities[J].Nonlinear Dyn, 2016, 83(1/2): 591-596.
[13]WAZWAZ A M, EL-TANTAWY S A. A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions[J].Nonlinear Dyn, 2016, 83(3):1529-1534.
(編 辑 张 欢)