(3+1)维KP-Boussinesq和BKP-Boussinesq方程的孤子解

2020-04-29 08:51:21任晓静葛楠楠
关键词:二次方程孤子对数

任晓静 葛楠楠

摘要:运用简化的齐次平衡法(SHB),导出(3+1)维KP-Boussinesq和BKP-Boussinesq方程的非线性变换,借助非线性变换,得到这两个方程的单孤子和双孤子解,丰富了其精确解系。

关键词:KP-Boussinesq方程; BKP-Boussinesq方程; 简化的齐次平衡法; 非线性变换; 孤子解

中图分类号:O175.29

DOI:10.16152/j.cnki.xdxbzr.2020-06-010

Soliton solutions of (3+1)-dimensional KP-Boussinesq andBKP-Boussinesq equations

REN Xiaojing, GE Nannan

(School of Mathematics, Northwest University, Xi′an 710127, China)

Abstract: Using the simplified homogeneous balance method(SHB), the nonlinear transformation of the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations are derived. With the help of nonlinear transformations, the one-soliton and two-soliton solutions of these two equations are obtained, enriching their exact solution system.

Key words: KP-Boussinesq equation; BKP-Boussinesq equation; simplified homogeneous balance; nonlinear transformation; soliton solutions

3 结语

本文借助非线性变换,将求解(3+1)维KP-Boussinesq和BKP-Boussinesq方程转变为求解两个相应的齐二次方程,由于齐二次方程有指数形式的解,把选取的解代入非线性变换,可得这两个方程的单孤子和双孤子解。通过求解方程,可发现该方法简明有效,且每一个非线性变换只对应一个齐二次方程。下一步会对n维对数型的非线性方程进行研究[11-13]。

参考文献:

[1] WAZWAZ A M. Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation[J].Commun Nonlinear Sci Numer Simulat, 2012, 17(2):491-495.

[2] MA W X, XIA T C. Pfaffianized systems for a generalized Kadomtsev-Petviashvili equation[J].Phys Scr, 2013, 87(5):055003.

[3] MA W X, ZHU Z N. Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm[J].Appl Math Comput, 2012,218(24):11871-11879.

[4] WAZWAZ A M, EL-TANTAWY S A. A new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation[J].Nonlinear Dyn, 2016, 84(2):1107-1112.

[5] WAZWAZ A M, EL-TANTAWY S A. Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota′s method[J].Nonlinear Dyn, 2017, 88(4):3017-3021.

[6] SUN B N, WAZWAZ A M. General high-order breathers and rogue waves in the (3+1)-dimensional KP-Boussinesq equation[J].Commun Nonlinear Sci Numer Simulat, 2018, 64:1-13.

[7] YAN X W, TIAN S F, DONG M J, et al. Bcklund transformation,rogue wave solutions and interaction phenomena for a (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation[J].Nonlinear Dyn, 2018, 92(2):709-720.

[8] WANG M L, LI X Z. Simplified homogeneous balance method and its applications to the Whitham-Broer-Kaup model equations[J].J Appl Phys, 2014, 2(8):823-827.

[9] WANG M L, ZHANG J L, LI X Z.Decay mode solutions to cylindrical KP equation[J].Appl Math Lett, 2016, 62:29-34.

[10]WANG M L, LI X Z, ZHANG J L. Two-soliton solution to a generalized KP equation with general variable coefficients[J].Appl Math Lett, 2018, 76: 21-27.

[11]WANG M L, ZHANG J L, LI X Z. N-dimensional Auto-Bcklund transformation and exact solutions to n-dimensional Burgers system[J].Appl Math Lett, 2017, 63:46-52.

[12]WAZWAZ A M. Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities[J].Nonlinear Dyn, 2016, 83(1/2): 591-596.

[13]WAZWAZ A M, EL-TANTAWY S A. A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions[J].Nonlinear Dyn, 2016, 83(3):1529-1534.

(編 辑 张 欢)

猜你喜欢
二次方程孤子对数
含有对数非线性项Kirchhoff方程多解的存在性
指数与对数
指数与对数
一个新的可积广义超孤子族及其自相容源、守恒律
(3+1)维Potential-Yu-Toda-Sasa-Fukuyama方程新的多周期孤子解
对数简史
浅谈二次函数与一元二次方程的关系
两个孤子方程的高阶Painlevé截断展开
趣谈中国古代数学中的方程问题
(3+1)维非线性方程的呼吸类和周期类孤子解