杨莹 王丽真
摘要:文中对时空分数阶多孔介质方程、带有非线性对流项的时空分数阶多孔介质方程和时空分数阶双多孔介质方程进行了对称分析,得到了3类多孔介质方程对应的Lie对称群,基于上述结果,进行了相应的对称约化,从而得到这些方程的群不变解。
关 键 词:时空分数阶多孔介质方程;Lie对称;相似约化;群不变解
中图分类号:0175.2
DOI:10.16152/j.cnki.xdxbzr.2020-01-012開放科学(资源服务)标识码(OSID):
Lie symmetry analysis for the space-time fractionalporous medium equations
YANG Ying1,2, WANG Lizhen1,2
(1.School of Mathematics, Northwest University, Xi′an 710127, China;
2.Nonlinear Studies of Science, Northwest University, Xi′an 710127, China)
Abstract: In this paper, we study the space-time fractional porous medium equation, the space-time fractional porous medium equation with a nonlinear convection term, the space-time fractional dual porous medium equation using Lie symmetry analysis. The corresponding symmetry groups of these three types porous medium equations are obtained. Based on the above results we perform the similarity reduction and obtain the group-invariant solutions to these equations.
Key words: space-time fractional porous medium equation; Lie symmetry; similarity reduction; group-invariant solution
线性和非线性偏微分方程在物理、化学、机械工程等诸多学科中起着重要的作用,大量研究表明,寻求非线性偏微分方程的精确解是偏微分方程研究中非常重要的问题。为此,产生了许多构造精确解的方法,如Laplace变换、同伦摄动、Adomain 分解以及不变子空间法等。Lie对称是研究偏微分方程的一种有效方法[1],该方法由Lie在十九世纪首次提出,随后Ovsianikov[2],Olver[3], Bluman[4]等学者对Lie对称法进行了研究和推广,应用此方法研究了一些复杂的常微分方程和偏微分方程的解以及解的性质。 Kasatine等在21世纪初研究了时间分数阶常微分方程的对称[5]以及时间分数阶常微分方程方程组[6]的对称。近几年,许多学者利用Lie对称研究了时间分数阶的偏微分方程,例如,黄晴等对时间分数阶Harry-Dym方程进行了Lie群分析,并构造了方程的群不变解[7],王丽真等对Harry-Dym类型的方程进行Lie群分析[9]。同时,还有一些学者对方程进行了群分类,如刘汉泽对五阶kdv方程进行群分类[8],并做了相应的对称约化。最近,少量学者将Lie对称方法应用到时空分数阶方程,如Inc及其合作者对时空分数阶非线性发展方程作了对称分析[10],Singla 对时空分数阶Gilson-Pickering 方程及推广的Kdv方程进行了对称分析[11]。
多孔介质方程在物理、工程科学等方面有很多的应用。近几年,这类方程引起了广泛的关注。利用条件对称法,Eatevez等构造了广义的多孔介质方程的泛函分离变量解[12];Bonforte和Grill用Sobolev不等式研究了多孔介质方程的渐近性[13];Caffarelli和Vazquez引入了一维分数阶多孔介质方程,并证明了有限速度传播的弱有界解的存在性[14];Pablo和Quiros建立了分数阶扩散多孔介质方程的存在性、唯一性和正则性理论[15];Stan和Teso通过自相似变换,研究了分数阶多孔介质方程[16];Carrillo和Huang推导了分数压力下一维多孔介质方程的指数收敛性[17];李静等研究了用于图像恢复的加权的双多孔介质方程[18];Bernis等研究了双多孔介质方程的奇异解[19];Galaktionov用不变子空间方法对整数阶双多孔介质方程进行了研究求解[20]。本文将对下列三类方程进行对称分析。
3 结 语
本文通过对称分析法研究了时空分数阶多孔介质方程,带有非线性流项的时空分数阶多孔介质方程及时空分数阶双多孔介质方程的解,得到了3类方程的Lie代数和群不变解。我们首先给出了Lie对称的基本方法和公式,接着计算出对应方程的向量场,通过所求出的向量场,利用对称约化得到3类方程的群不变解。在此研究过程中,我们利用Lie对称方法将求解分数阶偏微分方程的问题转化为求解分数阶常微分方程的问题。求解分数阶常微分方程将是我们未来研究方程的重要方向。
参考文献:
[1] BLUMAN G W, KUMEI S. Symmetries and Differential Equations[M].New York:Springer, 1989.
[2] OVSIANNIKOV L V. Group Analysis of Differential Equations[M].New York:Academic Press, 1982.
[3] OLVER P J. Application of Lie Group to Differential Equation[M].New York:Springer, 1986.
[4] BLUMAN G W, ANCO S C. Symmetry and Integration Methods for Differential Equations[M].New York:Springer-Verlag, 2002.
[5] GAZIZOV R K, KASATKIN A A, LUKASHCHUK Y S. Continuous transformation groups of fractional differential equations[J].Vestnik USATU, 2007, 9: 125-135.
[6] KASATKIN A A. Symmetry properties for systems of two ordinary fractional differential equations[J].Ufa Mathematical Journal,2012, 4(1): 65-75.
[7] HUANG Q, ZHDANOV R. Symmetries and exact solutions of the time-fractional Harry-Dym equation with Riemann-Liouville derivative[J].Physica A,2014, 409: 110-118.
[8] LIU H Z. Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations[J].Studies in Applied Mathematics, 2013,131(4):317-330.
[9] WANG L Z, WANG D J, SHEN S F, et al. Lie point symmetry analysis of the Harry-Dym type equation with Riemann-Liouville fractional derivative[J].Acta Mathematicae Applicate Sinica, English Series,2018,34(3):469-477.
[10]ESTEVEZ P G, QU C Z, ZHANG S L. Separation of variables of a generalized porous medium equation with nonlinear source[J].Journal of Mathematical Analysis and Application,2002, 275(1):44-59.
[11]INC M, YUAUF A, ALIYU A I. Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations[J].Physica A,2018, 496: 371-383.
[12]SINGLA K, GUPTA R K. Space-time fractional nonlinear partial differential equations: symmetry analysis and conservation laws[J].Nonlinear Dynam, 2017, 89(1): 321-331.
[13]BONFORTE M, GRILL. GAsymptotics of the porous media equation via Sobolev inequalities[J].Journal of Funcational Analysis,2005, 225(1):33-62.
[14]CAFFARELLI L, VAZQUEZ J L. Nonlinear Porous medium flow with fractional potential pressure[J].Archive for Rational Mechanics and Analysis,2011, 202(2): 537-565.
[15]STAN D, DEL F T, VAZQUEZ J L. Transformations of self-similar solutions for porous medium equations of fractional type[J].Nonlinear Anal-Theor,2015, 119: 62-73.
[16]PABLO A D, QUIROS F, RODRIGUEZ A, VAZQUEZ J. L A general fractional porous medium equation[J].Communications on Pure and Applied Mathematics,2012, 65(9): 1242-1284.
[17]CARRILLO J A,HUANG Y, SANTOS M C, et al. Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure[J].Journal of Differential Equations,2015(3), 258: 736-763.
[18]LI J, YIN J, SUN J A. Weighted dual porous medium equation applied to image restoration[J].Mathematical Methnods in the Applied Science,2013, 36(16):2117-2127.
[19]BERNIS.F HULSHOF. J VAZQUEZ J L. A very singular solution for thedual porous medium equation and the asymptotic behaviour of general solutions[J] .Jreineangew Mathe, 1993, 435: 1-32.
[20]GALAKIONOV V A, SVIRSHCHEVSKII S R. Exact solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanic and Physics[M].London:Chapman and Hall/CRC,2006.
[21]MOREL J M, Cachan, TAKENS F, TEISSIER B, et al. The Analysis of Fractional Differential Equation[M].Berlin:Springer, 2010.
(編 辑 李 波)