小麦远缘杂交现状、抗病基因转移及利用研究进展

2020-04-11 09:31刘成韩冉汪晓璐宫文萍程敦公曹新有刘爱峰李豪圣刘建军
中国农业科学 2020年7期
关键词:麦草抗病染色体

刘成,韩冉,汪晓璐,宫文萍,程敦公,曹新有,刘爱峰,李豪圣,刘建军

小麦远缘杂交现状、抗病基因转移及利用研究进展

刘成,韩冉,汪晓璐,宫文萍,程敦公,曹新有,刘爱峰,李豪圣,刘建军

(山东省农业科学院作物研究所/农业部黄淮北部小麦生物学与遗传育种重点实验室/小麦玉米国家工程实验室,济南 250100)

小麦近缘植物中含有丰富的抗病、抗逆和抗虫等基因,是小麦育种的优异基因源。通过远缘杂交可以将近缘植物优异基因转移给小麦,创制包括双二倍体或部分双二倍体、附加系、代换系和易位系等在内的小麦-近缘植物异染色体系。这些含小麦近缘植物血缘的异染色体系是研究物种染色体行为与进化、基因定位与作图的重要素材,也是拓宽小麦的遗传基础、抵御小麦重要病虫害、增加小麦产量和提升小麦品质的重要物质基础。为了更加清晰地了解小麦远缘杂交概况及小麦近缘植物抗病基因向小麦的转移,也为今后小麦远缘杂交研究和种质资源的开发利用提供参考,文中对小麦族物种分类、小麦远缘杂交的定义与意义、小麦族山羊草属、黑麦属、偃麦草属、簇毛麦属、冰草属、大麦属、披碱草属、赖草属、新麦草属以及旱麦草属物种与小麦远缘杂交现状和异染色体系创制情况进行了概括,并对来源于小麦近缘植物被正式命名的17个抗条锈病基因、35个抗叶锈病基因、30个抗秆锈病基因、41个抗白粉病基因、3个抗赤霉病基因、1个抗麦瘟病基因、1个抗叶枯病基因、1个抗颖枯病基因、4个抗褐斑病基因、2个抗眼斑病基因、1个抗梭条花叶病基因、2个抗线条花叶病基因和2个抗禾谷类黄矮病基因向小麦的转移情况及其所在染色体的位置信息进行了归纳。小麦-黑麦1RS·1BL易位系、1RS·1AL易位系和小麦-偏凸山羊草2NS/2AS易位系等抗病优良种质的育成与利用在世界小麦育种史上做出了突出贡献,然而,这仅仅得益于对少数抗病基因的利用。与目前已经被命名的基因数量相比,被利用到小麦育种中的抗病基因相对较少。文中分析了当前已命名抗病基因利用情况比例偏低的原因,并对今后如何利用这些抗病基因提出了建议。同时,还列举了已克隆的源自小麦近缘植物的抗病基因,并对克隆这些基因的方法以及今后可能的研究热点进行了分析,认为加强无遗传累赘的小麦-近缘植物易位系的创制与应用仍可能是今后小麦育种材料创新与新品种培育的一个重要发力点。

小麦;远缘杂交;异染色体系;抗病基因;衍生品种

1 小麦族分类

小麦族()有300多个物种,包含小麦属()、山羊草属()、黑麦属()、偃麦草属()、簇毛麦属()、冰草属()、大麦属()、披碱草属()、赖草属()、新麦草属()、旱麦草属()、类大麦属()、无芒草属()、异形花属()、棱轴草属()、鹅观草属()、拟鹅观草属()和澳麦草属()等,基本染色体组包含A—W和2个尚未确定的染色体组X和Y,表现出遗传变异的多样性[1-2]。小麦的近缘植物具有抗病[3-5]、抗虫[4-5]、抗旱[6]、抗寒[7-8]、耐盐[6,9-10]等优良性状,是小麦遗传改良的宝贵基因资源库[1-3]。

2 小麦远缘杂交现状

远缘杂交是亲缘关系较远的(包括生物学规定的不同“种”间、“属”间)以及亲缘关系更远的物种间杂交的统称[11-12]。小麦族中,小麦与黑麦、小麦与偃麦草、小麦与山羊草以及不同小麦种间的杂交均属远缘杂交,而生物学上规定的“种”以内的不同变种或品种间的杂交则统称为近缘杂交[11]。将近缘植物与小麦杂交,不仅可以将其优异基因导入小麦进行遗传改良[12-15],还可以用于基因及染色体作图[16-17]、染色体行为及进化[18-19]等研究。自18世纪,科学家们就零星开始了小麦远缘研究[20]。19世纪以来,国内外科学家们在小麦远缘杂交方面做了大量工作,不同小麦种间[21-22]、小麦与山羊草属[2,23-26]、黑麦属[2,20,26-29]、偃麦草属[2,11,26,30-32]、簇毛麦属[2,26,33-36]、冰草属[26,37-39]、大麦属[40-42]、披碱草属[43-45]、赖草属[26,46-48]、新麦草属[49-51]、旱麦草属[52-53]等属物种远缘杂交成功的结果陆续被报道出来。目前,除类大麦属、拟鹅观草属、无芒草属、异形花属、棱轴草属、澳麦草属物种外,其余小麦族各属物种均已有与小麦杂交成功的报道。

3 小麦-近缘植物异染色体系创制情况

包括小麦-近缘植物双二倍体或部分双二倍体、附加系、代换系和易位系等在内的异染色体系,是向小麦转移近缘植物优异基因的桥梁和物质基础[5,54-55]。目前,小麦种间[21-22]、小麦与山羊草属[2,55-57]、黑麦属[2,58-60]、偃麦草属[2,26,31,61-63]、簇毛麦属[2,33-35,64]、冰草属[2,65-67]、大麦属[68-70]、披碱草属[71-73]、赖草属[2,74-76]、新麦草属[2,77-80]等属物种异染色体系创制成功的结果如雨后春笋般被报道。目前,虽然已有大量的小麦-近缘植物异染色体系被创制出来,然而,被直接用于小麦育种的小麦-近缘植物染色体易位系的比例还比较低。

4 近缘植物抗病基因向栽培小麦转移情况

迄今为止,小麦与近缘植物杂交成功的报道已有数百个[5,11,19,26,31,81],其中大部分与小麦五大主要病害抗病基因转移有关[5,82]。目前,被国际小麦新基因命名委员会正式命名的抗小麦条锈病、叶锈病、秆锈病、白粉病和赤霉病的基因个数分别为82、79、60、65和7个,其中,来源于小麦近缘植物的基因个数分别有17(表1)、35(表2)、30(表3)、41(表4)和3个(表5),分别占被正式命名基因的20.7%、44.3%、50.0%、63.1%和42.9%。

此外,被正式命名的抗麦瘟病、叶枯病、颖枯病、褐斑病、眼斑病、梭条花叶病、线条花叶病和禾谷类黄矮病基因分别为8、18、3、7、3、1、3和3个,其中,来源于小麦近缘植物的基因个数分别有1、1、1、4、2、1、2和2个(表6),分别占被正式命名基因的12.5%、5.5%、33.3%、57.1%、66.7%、100%、66.7%和66.7%。

4.1 抗条锈病基因向小麦转移情况

来源于小麦近缘植物的抗条锈病基因有17个(表1),包括来自顶芒山羊草的、偏凸山羊草的、拟斯卑尔脱山羊草的、粗山羊草的、粘果山羊草的、沙融山羊草的、卵穗山羊草的、三芒山羊草的、小伞山羊草的、栽培黑麦的、中间偃麦草的、硬粒小麦的、和以及野生二粒小麦的、和。

表1 小麦近缘植物抗条锈病基因向小麦转移情况

4.2 抗叶锈病基因向小麦转移情况

来源于小麦近缘植物的抗叶锈病基因有35个(表2),包括来自小伞山羊草的和、粗山羊草的、、、、和、拟斯卑尔脱山羊草的、、、、和、偏凸山羊草的、粘果山羊草的、沙融山羊草的、卵穗山羊草的、钩刺山羊草的、柱穗山羊草的、短穗山羊草的、栽培黑麦的、和、长穗偃麦草的和、彭提卡偃麦草的、中间偃麦草的、粗穗披碱草的、栽培二粒小麦的、野生二粒小麦的和、硬粒小麦的、一粒小麦的和提莫非维小麦的。

4.3 抗秆锈病基因向小麦转移情况

来源于小麦近缘植物的抗秆锈病基因有30个(表3),包括来自顶芒山羊草的、偏凸山羊草的、拟斯卑尔脱山羊草的、和、希尔斯山羊草的、卵穗山羊草的、栽培黑麦的、、和、簇毛麦的、彭提卡偃麦草和、长穗偃麦草的和、中间偃麦草的、野生二粒小麦的、、、、和、一粒小麦的、、和、硬粒小麦的以及提莫非维小麦的和。

表2 小麦近缘植物抗叶锈病基因向小麦转移情况

表3 小麦近缘植物抗杆锈病基因向小麦转移情况

4.4 抗白粉病基因向小麦转移情况

来源于小麦近缘植物的抗白粉病基因有41个(表4),包括来自拟斯卑尔脱山羊草的和、粗山羊草的、、和、高大山羊草的、希尔斯山羊草的卵穗山羊草的、栽培黑麦的、、、和、簇毛麦的、和、中间偃麦草的和、彭提卡偃麦草的、一粒小麦的和、野生一粒小麦的、波斯小麦的、栽培二粒小麦的、、和、野生二粒小麦的、、、、、和、硬粒小麦的、乌拉尔图小麦的以及提莫非维小麦的、和。

表4 小麦近缘植物抗白粉病基因向小麦转移情况

4.5 抗赤霉病基因向小麦转移情况

来源于小麦近缘植物的抗赤霉病基因有3个(表5),包括来自大赖草的、柯孟披碱草(也有科学家称其为鹅观草)的和来自彭提卡偃麦草的。

4.6 其他抗病基因向小麦转移情况

来源于小麦近缘植物的五大主要病害之外的抗病基因有14个(表6),包括来自栽培二粒小麦的抗麦瘟病基因、粗山羊草的抗叶枯病基因、抗颖枯病基因和抗褐斑病基因、野生二粒小麦的抗褐斑病基因和、圆锥小麦的抗褐斑病基因、偏凸山羊草的抗眼斑病基因、簇毛麦的抗眼斑病基因和抗梭条花叶病毒基因、中间偃麦草的抗线条花叶病基因、以及抗禾谷类黄矮病基因和。

表5 小麦近缘植物抗赤霉病基因向小麦转移情况

表6 小麦近缘植物抗麦瘟病等基因向小麦转移情况

—表示基因已命名但无文献发表(McIntosh R A与Worland A K,私人通讯)

—indicates that the gene has been designated but no reference published (MCINTOSH R A and WORLAND A K, private communication)

5 小麦近缘植物抗病基因的利用

在小麦远缘杂交种质应用方面,对世界小麦育种做出突出贡献的当属小麦-黑麦1RS·1BL易位系。1RS染色体上由于含和等基因,受到了广大育种工作者的普遍青睐[14,203-206],国外育种家们利用该易位系及其衍生系作亲本,育成了山前麦、高加索、无芒一号和洛夫林13等高产抗病小麦,被全世界几十个国家作为骨干亲本应用,育成了一大批优异小麦新品种[207-210],在推动小麦品种的更新换代中发挥了重要作用[203,211-212]。除了1RS·1BL易位系,国外育种家们还培育出了含1RS·1AL易位系的Amigo等品种,并以此为骨干亲本,培育出了含该易位系的Zhytnytsa、Nota和Duma[203]、Columbia、Etude和Rastavitsa[213]、TAM107、TAM303、TAM305、AG Robust、Fannin、N96L9970[214-216]和Helami-105等小麦新品种/系[217],在美国、墨西哥和欧洲等国家推广应用。近年来,国际玉米小麦改良中心(CYMMYT)以该易位系为亲本育成了CM409和CM451等一批小麦新品种/系(刘彩云,私人通讯)。

据报道,19世纪后期中国约70%小麦品种含1RS·1BL易位系[204-205],其中,为中国小麦育种做出突出贡献的矮孟牛(Ⅱ型、Ⅳ—Ⅶ型)、周麦22、周8425B和石4185等骨干亲本材料均含有1RS染色体。近年来,由于新的致病生理小种的产生与流行,使得和等基因的抗性迅速丧失[177,218-219],加上育种家们在育种过程中注意杂交亲本的遗传多样性,因此,该易位系在中国小麦中的比例明显下降[220]。虽然等基因的抗性已经丧失[177,218-219],但近期的研究发现,不同黑麦来源的1RS·1BL易位系可能含有不同的抗病等位基因[14,221],即表明不同黑麦来源的该易位系仍能在小麦育种中发挥重要作用。尤其是近年来,不含黑麦碱但仍具有良好抗病性的1RS·1BL易位系的创制[222-224],为小麦育种提供了新的育种资源。

除含1RS染色质的育种材料外,含、和的小麦-偏凸山羊草2NS/2AS易位系对世界小麦育种也做出了突出贡献。以该易位系为抗源育成的Mace(还含和)[225-226]、Jagger、Madsen、Overley、SY Gold、Trident、EGA Eaglehawk和Espada等小麦品种在美国、澳大利亚和欧洲等国家推广应用[225-229]。研究发现,源自中国10余个省份69个小麦品种中的49%含该易位系[230]。此外,据报道,川育18、川麦25和川麦39等[231]、新麦19、济麦20、济麦21和师栾02-1[232]、兰考906、西农739、陕872和小偃216等品种/系[233]含有该易位系。近期研究发现,济麦20和济麦21中不含但中麦175中含有等基因,然而已对中国当前叶锈生理小种表现为感病[234]。此外,在澳大利亚、欧洲和中国的条锈抗性已经完全或部分丧失[228,235-236]。因此,今后在育种中应减少对该易位系的利用。

自19世纪以来,中国在小麦远缘杂交领域研究一直处在世界前列。中国科学家先后将偃麦草[31,61-63,81,237-244]、黑麦[58-60,245-252]、簇毛麦[35,253]和冰草[254-255]等种质转移给了小麦,育成了一大批远缘杂交新材料。在对这些小麦远缘杂交种质利用方面,取得了举世瞩目的研究成果,培育出的抗条锈病的小偃系列品种及其衍生品种[256-258]、普冰系列及其衍生品种(张锦鹏,私人通讯)和陕麦号及西农号小麦[259-260]、抗黄矮病的张春号、临抗号、晋麦号小麦[261-262]和黑小麦品种[263-264]、抗白粉病的南农号小麦及其衍生品种[265-267]、抗条锈和白粉等病害的川农系列小麦及其衍生品种[268-269]和远丰号小麦[270]等在中国大面积推广应用。上述品种抗病性来源主要为、、、、、和尚未被证明命名的少数几个基因。

除此之外,值得一提的是,中国科学家分别将来自彭提卡偃麦草抗赤霉病基因[189,271]和长穗偃麦草的尚未被命名的赤霉病基因[272-273]分别转移到小麦,创制了一批小麦-偃麦草染色体易位系,并将其导入中国主栽小麦,培育出了一批赤霉抗性达到中抗水平正在参加区域试验的小麦新品系,有望对小麦抗赤霉病育种发挥重要作用。

6 结论与展望

目前,众多个有明显育种价值的小麦-近缘植物染色体易位系/渐渗系被成功创制出来[4-5],并且有近140个抗病新基因被正式命名(表1—表6),但就基因利用状况来看,被利用到小麦抗病育种上的基因的比例还比较低。其原因可能是:(1)部分基因的抗性已经/正在丧失,例如、和等[274],、和等[234],、和等[275],、和等[276];(2)部分易位染色体具有遗传累赘,例如[277]、[278]、和[179]等基因所在近缘植物染色体臂。因此,在今后的研究中,应该做到:(1)加强二倍体和四倍体小麦抗病基因向栽培小麦的导入与利用;(2)加强对有遗传累赘效应易位系的染色体工程诱导。通过抗病基因转育,创制出更多的抗病种质资源并对其进行育种学评价。目前,已有多个研究团队在开展这项工作[267,279];(3)加强对无遗传累赘且具优异抗性易位系[267,279-280]的利用工作。

克隆抗病基因是研究其抗病机理的基础。目前,从小麦近缘植物中克隆出的抗病基因主要包括[281]、[282]、[283]、[284]、[285]、[286]、[287]、[288]、[289-290]等。其中,除和[85,162]外,其他几个基因均源自二倍体或四倍体小麦[96,98,100,141,143-145]。由于缺乏参考基因组信息,目前,从小麦-近缘植物(这里指非小麦属物种)染色体易位系中克隆抗病基因还有一定困难。当前,克隆这些基因可以利用不同居群的抗病性不同的同一小麦近缘种进行杂交(或利用诱变技术创制突变体),配置抗感分离群体进行基因定位与克隆,例如[282]和[289]的克隆;还可以创制更多的小麦-近缘植物染色体结构变异体,将抗病基因定位到近缘植物某一染色体小片段上,进而利用已克隆的模式植物抗病基因所在染色体区间与上述小片段区间进行基因共线性分析与确证,同源克隆近缘植物的抗病基因。近期笔者及其合作者们利用该方法克隆了(待发表)。

从理论研究上讲,随着小麦族物种基因组测序工作的陆续开展与完成,能够用于抗病基因克隆的参考基因组信息越来越多,今后克隆小麦近缘植物抗病基因将会变得越来越容易,因此,这些基因的抗病调控机制以及不同物种共线性抗病基因的进化可能将成为新的研究热点。从应用研究上讲,小麦-黑麦1RS·1BL易位系、1RS·1AL易位系和小麦-偏凸山羊草2NS/2AS易位系等抗病优良种质的育成与利用在世界小麦育种史上做出了突出贡献,然而,这仅仅得益于对少数抗病基因的利用。虽然目前被利用到小麦育种中的抗病基因相对较少,但加强无遗传累赘的小麦-近缘植物易位系的创制与应用仍可能是今后小麦育种材料创新与新品种培育的一个重要发力点。

致谢:堪萨斯州立大学Friebe B教授、德克萨斯农工生命研究和推广中心Liu SY教授、北达科他州立大学Cai XW教授、悉尼大学Zhang P博士和李建波博士、阿德莱德大学Dundas I博士、John Innes Centre的Griffiths S研究员、CYMMYT刘彩云博士后、乌克兰国家种子与品种调查中心Motsnyi I研究员、电子科技大学杨足君教授、中国农业科学院张锦鹏研究员、西北农林科技大学王长有教授、鲁东大学崔法教授、山东农业大学鲍印广教授在不同国家小麦品种所含外源染色质信息搜集中给予的大力帮助,在此表示感谢。

[1] 董玉琛, 刘旭. 中国作物及其野生近缘植物. 北京: 中国农业出版社, 2006.

DONG Y C, LIU X.. Beijing: China Agriculture Press, 2006. (in Chinese)

[2] 董玉琛, 郑殿升. 中国小麦遗传资源. 北京: 中国农业出版社, 2000.

DONG Y C, ZHENG D S.. Beijing: China Agriculture Press, 2000. (in Chinese)

[3] 董玉琛. 小麦的基因源. 麦类作物学报, 2000, 20(3): 78-81.

DONG Y C. Genepool of common wheat., 2000, 20(3): 78-81. (in Chinese)

[4] JIANG J M, FRIEBE B, GILL B S. Recent advances in alien gene transfer in wheat., 1993, 73(3): 199-212.

[5] FRIEBE B, BADAEVA E D, GILL B S, TULEEN N A. Cytogenetic identification ofchromosomes added to common wheat., 1996, 39(2): 272-276.

[6] NEVO E, CHEN G. Drought and salt tolerances in wild relatives for wheat and barley improvement., 2010, 33(4): 670-685.

[7] IRIKI N, KAWAKAMI A, TAKATA K, KUWABARA T, BAN T. Screening relatives of wheat for snow mold resistance and freeing tolerance., 2001, 122(2): 335-341.

[8] GALIBA G, STOCKINGER E J, FRANCIA E, MILC J, KOCSY G, PECCHIONI N. Freezing tolerance in the Triticeae //, Volume 2. Manhattan, USA: John Wiley & Sons Ltd, 2013.

[9] FAROOQ S, NIAZI MLK, IQBAL N, SHAH T M. Salt tolerance potential of wild resources of the tribe Triticeae., 1989, 119(2): 255-260.

[10] COLMER D T. Use of wild relatives to improve salt tolerance in wheat., 2006, 57(5): 1059-1078.

[11] 李振声, 容珊, 钟冠昌, 陈漱阳, 穆素梅. 小麦远缘杂交. 北京: 科学出版社, 1985.

LI Z S, RONG S, ZHONG G C, CHEN S Y, MU S M.. Beijing: Science Press, 1985. (in Chinese)

[12] SHARMA H C, GILL B S. Current status of wide hybridization in wheat., 1983, 32(1): 17-31.

[13] FRIEBE B, JIANG J, GILL B S, DYCK P L. Radiation-induced nonhomoeologous wheat-chromosomal translocations conferring resistance to leaf rust., 1993, 86(2/3): 141-149.

[14] REN T H, YANG Z J, YAN B J, ZHANG H Q, FU S L, REN Z L. Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat., 2009, 169(2): 207-213.

[15] LI Q, LU Y, PAN C, YAO M, ZHANG J, YANG X, LIU W, LI X, XI Y, LI L. Chromosomal localization of genes conferring desirable agronomic traits from wheat-disomic addition line 5113., 2016, 11(11): e0165957.

[16] ZELLER F J, HSAM S L K. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin//Sakamoto S. ed.. Kyoto, Japan: Plant Germ-Plasm Institute, Faculty of Agriculture, Kyoto University, 1983: l61-173.

[17] GONG W P, HAN R, LI H S,SONG J M, YAN H F, LI G Y, LIU A F, CAO X Y, GUO J, ZHAI S N, CHENG D G, ZHAO Z D, LIU C, LIU J J. Agronomic traits and molecular marker identification of wheat-addition lines., 2017, 8: 1743.

[18] LIU C, YANG Z J, JIA J Q, LI G R, ZHOU J P, REN Z L. Genomic distribution of a long terminal repeat (LTR)-like retrotransposon inspecies., 2009, 37(3): 363-372.

[19] 刘成, 李光蓉, 杨足君. 簇毛麦与小麦染色体工程育种. 北京: 中国农业科学技术出版社, 2013.

LIU C, LI G R, YANG Z J.. Beijing: China Agriculture Science and Technology Press, 2013. (in Chinese)

[20] 郑有良. 小麦特异种质资源研究. 成都: 四川科学技术出版社, 1999.

ZHENG Y L.. Chengdu: Sichuan Agriculture Science and Technology Press, 1999. (in Chinese)

[21] JOPPA L R, WILLIAMS N D. Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat., 1988, 30(2): 222-228.

[22] BROWN-GUEDIRA G L, BADAEVA E D, GILL B S, COX T S. Chromosome substitutions ofin common wheat and some observations on the evolution of polyploid wheat species., 1996, 93(8): 1291-1298.

[23] LEIGHTY C, SANDO W, TAYLOR J. Intergeneric hybrids in,and., 1926, 33: 101-141.

[24] KIHARA H, LILIENFELD F. Genomanalyse beiund., 1934, 6(1): 87-122.

[25] RILEY R, CHAPMAN V, JOHNSON R. Introduction of yellow rust resistance ofinto wheat by genetically induced homoeologous recombination., 1968, 217(5126): 383-384.

[26] 李集临, 曲敏, 张延明. 小麦染色体工程. 北京: 科学出版社, 2011.

LI J L, QU M, ZHANG Y M.. Beijing: Science Press, 2011. (in Chinese)

[27] BACKHOUSE W, BACKHOUSE W. Note on the inheritance of “crossability”., 1916, 6(2): 91-94.

[28] 鲍文奎. 八倍体小黑麦育种与栽培. 贵阳: 贵州人民出版社, 1977.

BAO W K.. Guiyang: Guizhou People’s Press, 1977. (in Chinese)

[29] REN T H, CHEN F, YAN B J, ZHANG H Q, REN Z L. Genetic diversity of wheat-rye 1BL.1RS translocation lines derived from different wheat and rye sources., 2012, 183(2): 133-146.

[30] DVOŘAK J. Meiotic pairing between single chromosomes of diploidand decaploidin., 1975, 17(3): 329-336.

[31] 李振声. 植物远缘杂交概说. 西安: 陕西科学出版社, 1980.

LI Z S.. Xi’an: Shanxi Science Press, 1980. (in Chinese)

[32] 畅志坚, 赵怀生, 李生海. 小麦与天蓝偃麦草远缘杂交中结实性的研究. 山西农业科学, 1992, 2: 7-10.

CHANG Z J, ZHAO H S, LI S H, Study on fruitfulness of distant hybridization betweenand., 1992, 2: 7-10. (in Chinese)

[33] HYDE B B. Addition of individualchromosomes to hexaploid wheat., 1953, 40: 174-182.

[34] SEARS E. Addition of the genome ofto., 1953: 168-174.

[35] LIU D J, CHEN P D, PEI G Z. Transfer ofchromosomes into//Miller T E, Koebner R M D. ed.. Cambridge UK: Institute of Plant Science Research, Cambridge Laboratory, 1988: 355-361.

[36] VON BOTHMER R, CLAESSON L. Production and meiotic pairing of intergeneric hybrids of×species., 1990, 51: 109-117.

[37] LIMIN A E, FOWLER D B. An interspecific hybrid and amphiploid produced fromcrosses withand., 1990, 33(4): 581-584.

[38] 李立会, 董玉琛. 普通小麦与沙生冰草属间杂种的产生及细胞遗传学研究. 中国科学: 化学生命科学地学, 1990, 1(5): 492-497.

LI L H, DONG Y C. Generation and cytogenetics of intergeneric hybrids betweenand., 1990, 1(5): 492-497. (in Chinese)

[39] JAUHAR P. Chromosome pairing in hybrids between hexaploid bread wheat and tetraploid crested wheatgrass ()., 1992, 116(1/2): 107-109.

[40] KRUSE A.×hybrids., 1973, 73(1): 157-161.

[41] SHEPHERD K, ISLAM A.. Cambridge: Cambridge University Press, 1981.

[42] 蒋继明, 刘大钧. 普通小麦与野生大麦的属间杂交. 作物学报, 1990, 16(4): 324-328.

JIANG J M, LIU D J. Intergeneric hybridization between common wheat and wild barley., 1990, 16(4): 324-328. (in Chinese)

[43] MUJEEB-KAZI A, BERNARD M. Somatic chromosome variations in backcross I progenies from intergeneric hybrids involving some Triticeae., 1982, 10(1/2): 41-45.

[44] LU B R, VON BOTHMER R. Production and cytogenetic analysis of the intergeneric hybrids between ninespecies and common wheat (L.)., 1991, 58(1): 81-95.

[45] 孙其信, 高建伟. 普通小麦与无融合生殖披碱草属间杂种F1的产生及其分子鉴定. 农业生物技术学报, 1997, 5(4): 313-317.

SUN Q X, GAO J W. Production of intergeneric hybrid between wheat and apomicticand its molecular identification., 1997, 5(4): 313-317. (in Chinese)

[46] 陈孝, 张文祥, 黄惠宇. 普通小麦与新疆大赖草杂种幼胚离体培养技术的研究. 农业新技术, 1989(2): 4-7.

CHEN X, ZHANG W X, HUANG H Y. Study on in vitro culture of immature embryos of hybrids between common wheat and Xinjiang., 1989(2): 4-7. (in Chinese)

[47] 张学勇, 董玉琛, 杨欣明, 李翠钗. 普通小麦()和毛穗赖草()的杂交, 杂种细胞无性系的建立及植株再生. 作物学报, 1992, 18(4): 258-265, 321-322.

ZHANG X Y, DONG Y C, YANG X M, LI C C. Hybridization ofwiththe establishment of somatic callus clones of the hybrid embryos and plant regeneration., 1992, 18(4): 258-265, 321-322. (in Chinese)

[48] 陈佩度, 孙文献, 刘文轩, 袁建华, 刘朝晖, 冯以高, 王苏玲, 周波, 刘大钧. 将大赖草抗赤霉病基因导入普通小麦及抗赤霉病基因的染色体定位. 遗传, 1998, 20(增刊): 126.

CHENG P D, SUN W X, LIU W X, YUAN J H, LIU Z H, FENG Y G, WANG S L, ZHOU B, LIU D J. Introduction of scab resistance gene fromintoand chromosome location of scab resistance gene., 1998, 20(S1): 126. (in Chinese)

[49] 陈勤, 周荣华, 李立会, 李秀全, 杨欣明, 董玉琛. 第一个小麦与新麦草属间杂种. 科学通报, 1988, 33(1): 64-67.

CHEN Q, ZHOU R H, LI L H, LI X Q, YANG X M, DONG Y C. The first intergeneric hybrid between wheat and., 1988, 33(1): 64-67. (in Chinese)

[50] 陈漱阳, 侯文胜, 张安静, 傅杰, 杨群慧. 普通小麦-华山新麦草异附加系的选育及细胞遗传学研究. 遗传学报, 1996, 23(6): 447-452, 488.

CHEN S Y, HOU W S, ZHANG A J, FU J, YANG Q H. Breeding and cytogenetic study ofalien addition lines., 1996, 23(6): 447-452, 488. (in Chinese)

[51] KANG H Y, ZHANG Z J, XU L L, QI W L, TANG Y, WANG H, ZHU W, LI D Y, ZENG J, WANG Y. Characterization of wheat-small segment translocation line with enhanced kernels per spike and stripe rust resistance., 2016, 59(4): 1.

[52] 刘建文, 董玉琛. 普通小麦×东方旱麦草属间杂种的产生及无性系的建立. 遗传学报, 1995, 22(2): 116-121.

LIU J W, DONG Y C. Establishment of somaclones and regeneration of plant from×hybrid., 1995, 22(2): 116-121. (in Chinese)

[53] 张桂芳, 刘建文, 黄远樟, 丁敏, 唐顺学, 贾旭. 普通小麦与东方旱麦草杂交世代的细胞遗传学研究. 植物学报, 1999, 41(11): 1150-1154.

ZHANG G F, LIU J W, HUANG Y Z, DING M, TANG S X, JIA X. Cytogenetic studies on the cross-generations betweenand., 1999, 41(11): 1150-1154. (in Chinese)

[54] LIU C, QI L, LIU W, ZHAO W, GILL B S. Development of a set of compensatingrobertsonian translocation lines., 2011, 54(10): 836-844.

[55] LIU C, GONG W, HAN R, GUO J, LI G, LI H, SONG J, LIU A, CAO X, ZHAI S. Characterization, identification and evaluation of a set of wheat-chromosome lines., 2019, 9(1): 4773.

[56] 翁跃进, 董玉琛. 普通小麦-顶芒山羊草异源附加系的创建和鉴定: I. 小麦花药培养对创建普通小麦-顶芒山羊草异源附加系的作用. 作物学报, 1995, 21(1): 39-44.

WENG Y J, DONG Y C. Development ofaddition lines in common wheat (L.): I. Effection of wheat anther culture to development ofaddition lines in common wheat., 1995, 21(1): 39-44. (in Chinese)

[57] 王洪刚, 刘树兵, 高居荣, 孔凡晶. 小麦与钩刺山羊草杂种的育性、抗病性和细胞遗传学研究. 麦类作物学报, 2000, 20(3): 1-5.

WANG H G, LIU S B, GAO J R, KONG F J. Study on fertility, disease resitance and cytogentics of hybrid betweenand., 2000, 20(3): 1-5. (in Chinese)

[58] REN Z, ZHANG H. Induction of small-segment-translocation between wheat and rye chromosomes., 1997, 40(3): 323.

[59] 李爱霞. 普通小麦辉县红-荆州黑麦异染色体系的选育及其梭条花叶病和白粉病抗性鉴定[D]: 南京: 南京农业大学, 2006.

LI A X. Development of wheat landrace Huixianhong alian chromosome lines derived from Chinese rye cultivar Jingzhouheimai and its WSSMV and powdery mildew resistance identification[D]. Nanjing: Nanjing Agricultural University, 2006. (in Chinese)

[60] LEI M P, LI G R, LIU C, YANG Z J. Characterization of wheat-introgression lines reveals evolutionary aspects of chromosome 1R in rye., 2012, 55(10): 765-774.

[61] 孙善澄. 小偃麦新品种与中间类型的选育途径、程序和方法. 作物学报, 1981, 7(1): 51-58.

SUN S D. The approach and methods of breeding new varieties and new species from agrotriticum hybrids., 1981, 7(1): 51-58. (in Chinese)

[62] 张学勇, 李振声. “缺体回交法”选育普通小麦异代换系方法的研究. 遗传学报, 1989: (6): 420-429.

ZHANg X Y, LI Z S. Studies on the nullisomic backcrossing procedures for producing alien substitution lines of common wheat., 1989, 16(6): 420-429. (in Chinese)

[63] 畅志坚. 几个小麦-偃麦草新种质的创制及分子细胞遗传学分析[D]. 雅安: 四川农业大学, 1999.

CHANG Z J. Creation and molecular cytogenetic analysis of several new germplasms of[D]. Ya'an: Sichuan Agricultural University, 1999. (in Chinese)

[64] 傅杰, 周荣华, 赵继新, 陈漱阳, 杨群慧. 不同小麦背景小簇麦双二倍体的品质、抗病性及分子细胞遗传学研究. 西北植物学报, 2001, 21(6): 1103-1109.

Fu J, ZHOU R H, ZHAO J X, CHEN S Y, YANG Q H. Research on quality, disease resistance and molecular cytogenetics ofamphidiploids with different wheat genetic background., 2001, 21(6): 1103-1109. (in Chinese)

[65] ZHANG J, ZHANG J, LIU W H, HAN H, LU Y, YANG X, LI L. Introgression of6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length., 2015, 128(9): 1827-1837.

[66] LU M, LU Y, LI H, PAN C, GUO Y, ZHANG J, YANG X, LI X, LIU W, LI L. Transferring desirable genes from7P chromosome into common wheat., 2016, 11(7): e0159577.

[67] SONG L, LU Y, ZHANG J, PAN C, YANG X, LI X, LIU W, LI L. Cytological and molecular analysis of wheat-translocation lines with 6P chromosome fragments conferring superior agronomic traits in common wheat., 2016, 59(10): 840-850.

[68] ISLAM A K M R, SHEPHERD K W, SPARROW D H B. Isolation and characterization of euplasmic wheat-barley chromosome addition lines., 1981, 46(2): 161-174.

[69] KONG F, WANG H, CAO A, QIN B, JI J, WANG S, WANG X E. Characterization ofchromosome addition lines DA2H and MA5H., 2008, 35(1): 673-678.

[70] FANG Y, YUAN J, WANG Z, WANG H, XIAO J, YANG Z, ZHANG R, QI Z, XU W, HU L. Development ofL.alien chromosome lines and assignment of homoeologous groups ofchromosomes., 2014, 41(8): 439-447.

[71] MORRIS K L, RAUPP W J, GILL B S. Isolation of Htgenome chromosome additions from polyploid(StStHtHt) into common wheat ()., 1990, 33(1): 16-22.

[72] 王长有, 李小忠, 吉万全, 张改生, 王秋英, 薛秀庄. 普通小麦与衍生后代的细胞遗传学和形态学研究. 麦类作物学报, 2003, 23(4): 5-9.

WANG C Y, LI X Z, JI W Q, ZHANG G S, WANG Q Y, XUE X Z. Cytogenetics and morphology of the derivatives from a cross betweenand apimictic., 2003, 23(4): 5-9. (in Chinese)

[73] DOU Q, LEI Y, MOTT I W, WANG R R. Characterization of alien chromosomes in backcross derivatives of×hybrids using molecular markers and sequential multi-color FISH/GISH., 2012, 55(5): 337-347.

[74] QI L L, WANG S L, CHEN P D, LIU D J, FRIEBE B, GILL B S. Molecular cytogenetic analysis ofchromosomes added to wheat., 1997, 95(7): 1084-1091.

[75] 刘文轩, 陈佩度, 刘大均. 利用荧光原位杂交技术检测导入普通小麦的大赖草染色质. 遗传学报, 1999, 26(5): 546-551.

LIU W X, CHEN P D, LIU D J. Detection ofchromatin in wheat by fluorescence in situ hybridization., 1999, 26(5): 546-551. (in Chinese)

[76] 王秀娥, 陈佩度, 周波, 袁建华, 刘文轩, GILL B S, 刘大钧. 小麦-大赖草易位系的RFLP分析. 遗传学报, 2001, 28(12):1142-1150.

WANG X E, CHEN P D, ZHOU B, YUAN J H, LIU W X, GILL B S, LIU D J. RFLP analysis of wheat-translocation lines., 2001, 28(12): 1142-1150. (in Chinese)

[77] 周荣华, 贾继增, 董玉琛, SCHWARZACHER T, MILLER T E, READER S M, WU S B, GALE M D. 用基因组原位杂交技术检测小麦-新麦草杂交后代. 中国科学(C辑), 1997, 27(6): 543-549.

ZHOU H R, JIA J Z, DONG Y C, SCHWARZACHER T, MILLER T E, READER S M, WU S B, GALE M D. Detection of hybrid progenies of wheat-by genome in situ hybridization.,1997, 27(6): 543-549. (in Chinese)

[78] 傅杰, 王美南, 赵继新, 陈漱阳, 侯文胜, 杨群惠. 抗全蚀病小麦-华山新麦草中间材料H8911的细胞遗传学研究与利用. 西北植物学报, 2003, 23(12): 2157-2162.

FU J, WANG M N, ZHAO J X, CHEN S Y, HOU W S , YANG Q H. Studies on cytogenetics and utilization of wheat-medium material H8911 with resistance to wheat take-all fungus., 2003, 23(12): 2157-2162. (in Chinese)

[79] 武军, 赵继新, 陈新宏, 刘淑会, 杨群慧, 刘文献, 魏芳琴, 董剑, 朱建楚. 普通小麦-华山新麦草衍生后代的细胞学特点及GISH分析. 麦类作物学报, 2007, 27(5): 772-775.

WU J, ZHAO J X, CHEN X H, LIU S H, YANG Q H, LIU W X, WEI F Q, DONG J, ZHU J C. Cytology characteristic and GISH analysis on the progenies derived from common wheat (L.) ×., 2007, 27(5): 772-775. (in Chinese)

[80] KANG H, WANG Y, FEDAR G, CAO W, ZHANG H, FAND X, SHA L, XU L, ZHENG Y, ZHOU Y. Introgression of chromosome 3Ns frominto wheat specifying resistance to stripe rust., 2011, 6(7): e21802.

[81] SHARMA H C. How wide can a wide cross be?, 1995, 82(1): 43-64.

[82] 刘成, 闫红飞, 宫文萍, 李光蓉, 刘大群, 杨足君. 小麦叶锈病新抗源筛选. 植物遗传资源学报, 2013, 14(5): 936-944.

LIU C, YAN H F, GONG W P, LI G R, LIU D Q, YANG Z J. Screening of new resistance sources of wheat leaf rust., 2013, 14(5): 936-944. (in Chinese)

[83] BARIANA H S, MCINTOSH R A. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A., 1993, 36(3): 476-482.

[84] Chen X M, Jones S S, Line R F. Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee and Lemhi and interactions of aneuploid wheats with races of., 1995, 85(3): 375-381.

[85] SINGH R P, NELSON J C, SORRELLS M E. Mappingand other genes for resistance to stripe rust in wheat., 2000, 40(4): 1148-1155.

[86] MARAIS G, MCCALLUM B, SNYMAN J, PRETORIUS Z, MARAIS A. Leaf rust and stripe rust resistance genesandtransferred to wheat from., 2005, 124(6): 538-541.

[87] MARAIS G F, MCCALLUM B, MARAIS A S. Leaf rust and stripe rust resistance genes derived from., 2006, 149(3): 373-380.

[88] KURAPARTHY V, CHHUNEJA P, DHALIWAL H S, KAUR S, BOWDEN R L, GILL B S. Characterization and mapping of cryptic alien introgression fromwith new leaf rust and stripe rust resistance genesandin wheat., 2007, 114(8): 1379-1389.

[89] MARAIS F, MARAIS A, MCCALLUM B, PRETORIUS Z. Transfer of leaf rust and stripe rust resistance genesandfromReq. ex Bertol. to common wheat., 2009, 49(3): 871-879.

[90] BANSAL M, KAUR S, DHALIWAL H S, BAINS N S, BARIANA HS, CHHUNEJA P, BANSAL U K. Mapping of-derived leaf rust and stripe loci in wheat., 2016, 66(1): 38-44.

[91] ZELLER F J. 1B/1R wheat-rye chromosome substitutions and translocations//Sears E R, Sears L M S (Eds).. Columbia, USA: University of Missouri Press, 1973: 209-222.

[92] LIU J, CHANG Z, ZHAN X, YANG Z, LI X, JIA J, ZHAN H, GUO H, WANG J. Putative-derived stripe rust resistance genemaps on wheat chromosome arm 4BL., 2013, 126(1): 265-274.

[93] MACER R C F. The forma and monosomic genetic analysis of stripe rust () resistance in wheat//Mackey J. ed.. Lund University, Lund, Sweden., 1963: 127-142.

[94] MCINTOSH R A, LAGUDAH E S. Cytogenetical studies in wheat. XVIII. Genefor resistance to stripe rust., 2000, 119(1): 81-93.

[95] XU L S, WANG M N, CHENG P, KANG Z S, HULBERT S H, CHEN X M. Molecular mapping of, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat., 2013, 126(2): 523-533.

[96] MCINTOSH R A, SILK J, THE T T. Cytogenetic studies in wheat XVII. Monosomic analysis and linkage relationships of gene, for resistance to stripe rust., 1996, 89(3): 395-399.

[97] MARAIS G F, PRETORIUS Z A, WELLINGS C R, MCCALLUM B, MARAIS A S. Leaf rust and stripe rust resistance genes transferred to common wheat from., 2005, 143(1/2): 115-123.

[98] CHICAIZA O, KHAN I A, ZHANG X, BREVIS C J, JACKSON L, CHEN X M, DUBCOVSKY J. Registration of five wheat isogenic lines for leaf rust and stripe rust resistance genes., 2006, 46: 485-487.

[99] SEARS E R. The transfer of leaf rust resistance fromto wheat//; Brookhaven National Laboratory: Upton, NY 1956.

[100] ROWLAND G G, KERBER E R. Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from., 1974, 16(1): 137-144.

[101] DYCK P L, KERBER E R. Inheritance in hexaploid wheat of adult plant leaf resistance derived from., 1970, 12(1): 175-180.

[102] KERBER E R. Resistance to leaf rust in hexaploid wheat:, a third gene derived from., 1987, 27(2): 204-206.

[103] RAUPP W J, SINGH S, BROWN-GUEDIRA G L, GILL B S. Cytogenetic and molecular mapping of the leaf rust resistance genein wheat., 2001, 102(2/3): 347-352.

[104] COX T S, RAUPP W J, GILL B S. Leaf rust-resistance genes,, andtransferred fromto common wheat., 1994, 34(2): 339-343.

[105] KERBER E R, DYCK P L. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of×, 1990, 33(4): 530-537.

[106] DVOŘ K J, KNOTT D R. Location of achromosome segment conferring resistance to leaf rust in, 1990, 33(6): 892-897.

[107] DUBCOVSKY J, LUKASZEWSKI A J, ECHAIDE M, ANTONELLI E F, PORTER D R. Molecular characterization of twointerstitial translocations carrying leaf rust and greenbug resistance genes., 1998, 38(6): 1655-1660.

[108]HELGUERA M, VANZETTI L, SORIA M, KHAN I A, KOLMER J, DUBCOVSKY J. PCR markers forleaf rust resistance geneand their use to develop isogenic hard red spring wheat lines., 2005, 45(2): 728-734.

[109] MARAIS G F, BEKKER T A, EKSTEEN A, MCCALLUM B, FETCH T, MARAIS A S. Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from., 2010, 171(1): 71-85.

[110] MCINTOSH R, YAMAZAKI Y, DEVOS K M,, DUBCOVSKY J, ROGERS W J, APPELS R. Catalogue of gene symbols//KOMUG- Integrated Wheat Science Database, 2003:http://shigen.lab.nig.ac.jp/ wheat/ komugi/top/top.jsp.

[111] KURAPARTHY V, SOOD S, CHHUNEJA P, DHALIWAL H S, KAUR S, BOWDEN R L, GILL B S. A cryptic wheat-translocation with leaf rust resistance gene, 2007, 47(5): 1995-2003.

[112] MARAIS G, MCCALLUM B, MARAIS A. Wheat leaf rust resistance genederived from., 2008, 127(4): 340-345.

[113] DRISCOLL C, ANDERSON L. Cytogenetic studies of Transec-a wheat-rye translocation line., 1967, 9(2): 375-380.

[114] SINGH N, SHEPHERD K, MCINTOSH R. Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalins on the short arm of rye chromosome 1R., 1990, 80(5): 609-616.

[115] MCINTOSH R A, FRIEBE B, JIANG J, THE D, GILL B S. Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line., 1995, 82(2): 141-147.

[116] SARMA D, KNOTT D. The transfer of leaf-rust resistance fromtoby irradiation., 1966, 8(1): 137-143.

[117] MCINTOSH R, DYCK P, GREEN G. Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha., 1977, 28(1): 48-49.

[118] FRIEBE B, JIANG J M, Gill B S, DYCK P L. Radiation-induced nonhomoelogous wheat-chromosomal translocations conferring resistance to leaf rust., 1993, 86: 141-149.

[119] SEARS E R.-wheat transfers induced by homoeologous pairing//Sears E R, Sears L M S. ed.. Columbia, USA: University of Missouri Press, 1973: 191-199.

[120] FRIEBE B, WILSON D, RAUPP W, GILL B, BROWN-GUEDIRA G. Notice of release of KS04WGRC45 leaf rust-resistant hard white winter wheat germplasm., 2005, 51: 188-189.

[121] DYCK P L, SAMBORSKI D J. The genetics of two alleles for leaf rust resistance at thelocus in wheat., 1970, 12(4): 689-694.

[122] KOLMER J A, BERNARDO A, BAI G, HAYDEN M J, ANDERSON J A. Thatcher wheat line RL6149 carries, and a second leaf rust resistance gene on chromosome 1DS., 2019, 132(10): 2809-2814.

[123] MCINTOSH R A, DYCK P L. Cytogenetical studies in wheat VII. Genefor reaction toin Gabo and related cultivars., 1975, 28(2): 201-212.

[124] KOLMER J A, ANDERSON J A, FLOR J M. Chromosome location, linkage with simple sequence repeat markers, and leaf rust resistance conditioned by gene, 2010, 50(50): 2392-2395.

[125] BROWNGUEDIRA G L, SINGH S, FRITZ A K. Performance and mapping of leaf rust resistance transferred to wheat fromsubsp.., 2003, 93(7): 784-789.

[126] MAGO R, VERLIN D, ZHANG P, BANSAL U, BARIANA H, JIN Y, ELLIS J, HOXHA S, DUNDAS I. Development of wheat-recombinants and simple PCR-based markers forand a new stem rust resistance gene on the 2S#1 chromosome., 2013, 126(12): 2943-2955.

[127] FARIS J D, XU S S, CAI X, FRIESEN T L, JIN Y. Molecular and cytogenetic characterization of a durum wheat-chromosome translocation conferring resistance to stem rust., 2008, 16(8): 1097-1105.

[128] LIU W X, JIN Y, ROUSE M, FRIEBE B, GILL B, PUMPHREY M O. Development and characterization of wheat-Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust., 2011, 122: 1537-1545.

[129] LIU W, ROUSE M, FRIEBE B, JIN Y, GILL B, PUMPHREY M O. Discovery and molecular mapping of a new gene conferring resistance to stem rust,, derived fromand characterization of spontaneous translocation stocks with reduced alien chromatin., 2011, 19(5): 669-682.

[130] SINGH S J, MCINTOSH R A. Allelism of two genes for stem rust resistance in triticale., 1988, 38(2): 185-189.

[131] MCINTOSH R A. Catalogue of gene symbols for wheat// Miller T E, Koebner R M D. ed.. Cambridge, UK: Institute of Plant Science Research, Cambridge Laboratory, 1988: 1225-1323.

[132] MAGO R, ZHANG P, VAUTRIN S. The wheatgene reveals rich diversity at a cereal disease resistance locus., 2015, 1(12): 15186.

[133] RAHMATOV M, ROUSE M N, NIRMALA J, DANILOVA T, FRIEBE B, STEFFENSON B J, JOHANSSON E. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance geneinto wheat., 2016, 129(7): 1383-1392.

[134] QI L, PUMPHREY M, FRIEBE B, ZHANG P, QIAN C, BOWDEN R, ROUSE M, JIN Y, GILL B. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene () effective against race Ug99 frominto bread wheat., 2011, 123(1): 159-167.

[135] KNOTT D. The inheritance of rust resistance. VI. The transfer of stem rust resistance fromto common wheat., 1961, 41(1): 109-123.

[136] KIBIRIGE-SEBUNYA I, KNOTT D R. Transfer of stem rust resistance to wheat from anchromosome having a gametocidal effect., 1983, 25(3): 215-221.

[137] LIU W, DANILOVA T V, ROUSE M N, BOWDEN R L, FRIEBE B, GILL B S, PUMPHREY M O. Development and characterization of a compensating wheat-Robertsonian translocation withresistance to stem rust (Ug99)., 2013, 126(5): 1167-1177.

[138] KNOTT D R. The inheritance of resistance to stem rust races 15B-1 and 56 in Fren., 1983, 25(3): 283-285.

[139] KNOTT D R. The inheritance of stem rust resistance in wheat// MacKey J. ed.. Lund University, Lund, Sweden 1963., 1966: 156-166.

[140] MCINTOSH R A, LUIG N H. Recombination between genes for reaction toat or near thelocus// Sears E R, Sears L M S. ed.. Columbia, USA: University of Missouri Press, 1973: 425-432.

[141] KNOTT D R The inheritance of rust resistance IX. The inheritance of resistance to races 15B and 56 of stem rust in the wheat variety Khapstein., 1962, 42: 415-419.

[142] MCINTOSH R A, LUIG N H, BAKER E P. Genetic and cytogenetic studies of stem rust, leaf rust, and powdery mildew resistances in hope and related wheat cultivars., 1967, 20(20): 1181-1192.

[143] THE T T. Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat., 1973, 241(112): 256.

[144] MCINTOSH R A, DYCK P L, THE T T, CUSICK J E, MILNE D L. Cytogenetical studies in wheat XIII.-a third gene fromfor resistance to, 1984, 92: 1-14.

[145] CHEN S, GUO Y, BRIGGS J, DUBACH F, CHAO S M, ZHANG W J, ROUSE M N, DUBCOVSKY J. Mapping and characterization of wheat stem rust resistance genesandfrom, 2018, 131(11): 625-635.

[146] SHEEN S J, SNYDER L A. Studies on the inheritance of resistance to six stem rust cultures using chromosome substitution lines of a marquis wheat selection., 1964, 6(1): 74-82.

[147] MCINTOSH R A.as a source of resistance to wheat stem rust., 1971, 66: 240-248.

[148] JIA J, DEVOS K M, CHAO S, MILLER T E, READER S M, GALE M D. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of, a powdery mildew resistance gene transferred fromto wheat., 1996, 92(5): 559-565.

[149] HSAM S L K, LAPOCHKINA I F, ZELLER F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (L. em Thell.). 8. Genein a wheat-translocation line., 2003, 133(3): 367-370.

[150] PETERSEN S, LYERLY J H, WORTHINGTON M L, PARKS W R, COWGER C, MARSHALL D S, BROWN-GUEDIRA G, MURPHY J P. Mapping of powdery mildew resistance geneintrogressed frominto soft red winter wheat., 2015, 128(2): 303-312.

[151] LUTZ J, HSAM S L K, LIMPERT E, ZELLER F J. Chromosomal location of powdery mildew resistance genes inL. (common wheat). 2. GenesandfromL.., 1995, 74(2): 152-156.

[152] MIRANDA L M, MURPHY J P, MARSHALL D, LEATH S.: a new powdery mildew resistance gene transferred fromCoss. to common wheat (L.)., 2006, 113(8): 1497-1504.

[153] MIRANDA L M, MURPHY J P, MARSHALL D, COWGER C, LEATH S. Chromosomal location of, a novelderived powdery mildew resistance gene introgressed into common wheat (L.)., 2007, 114(8): 1451-1456.

[154] WIERSMA A T, PULMAN J A, BROWN L K, COWGER C, OLSON E L. Identification offrom., 2017, 130(6): 1-11.

[155] CEOLONI C, DEL S G, PASQUINI M, TESTA A, MILLER T E, Koebner R M D. Transfer of mildew resistance frominto wheat byinduced homoeologous recombination// Miller T E, Koebner R M D. ed.. Cambridge, UK: Institute of Plant Science Research, Cambridge Laboratory, 1988: 221-226.

[156] LIU W, KOO D H, XIA Q, LI C, BAI F, SONG Y, FRIEBE B, GILL B S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant genefrominto wheat., 2017, 130(4): 841-848.

[157] ZELLER F J, KONG L, HARTL L, MOHLER V, HSAM S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (L. em Thell.) 7. Gene, 2002, 123(2): 187-194.

[158] DRISCOLL C, JENSEN N. Release of a wheat-rye translocation stock involving leaf rust and powdery mildew resistances 1., 1965, 5(3): 279-280.

[159] HEUN M. Chromosomal location of the powdery mildew resistance gene of Amigo wheat., 1990, 80(10): 1129-1133.

[160] FRIEBE B, HEUN M, TULEEN N, ZELLER F J, GILL B S. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat., 1994, 34(3): 621-625.

[161] HAO M, LIU M, LUO J T, FAN C L, YI Y J, ZHANG L Q, YUAN Z W, NING S Z, ZHENG Y L, LIU D C. Introgression of powdery mildew resistance geneon rye chromosome arm 6RS into wheat., 2018, 9: 1040.

[162] CHEN P D, QI L L, ZHOU B, ZHANG S Z, LIU D J. Development and molecular cytogenetic analysis of wheat-6VS/6AL translocation lines specifying resistance to powdery mildew., 1995, 91(6/7): 1125-1128.

[163] ZHANG R, SUN B, CHEN J, CAO A, XING L, FENG Y, LAN C, CHEN P., a developmental-stage and tissue-specific powdery mildew resistance gene introgressed frominto common wheat., 2016, 129(10): 1975-1984.

[164] ZHANG R, FAN Y, KONG L, WANG Z, WU J, XING L, CAO A, FENG Y., an adult-plant powdery mildew resistance gene introgressed fromchromosome arm 2VL into wheat., 2018, 131(12): 2613-2620.

[165] LUO P G, LUO H Y, CHANG Z J, ZHANG HY, ZHANG M, REN ZL. Characterization and chromosomal location ofin common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium., 2009, 118(6): 1059-1064.

[166] HE R, CHANG Z, YANG Z, YUAN Z, ZHAN H, ZHANG X, LIU J. Inheritance and mapping of powdery mildew resistance geneintrogressed frominto wheat., 2009, 118(6): 1173-1180.

[167] ZHAN H, LI G, ZHANG X, LI X, GUO H, GONG W, JIA J, QIAO L, REN Y, YANG Z. Chromosomal location and comparative genomics analysis of powdery mildew resistance genein a putative wheat-introgression line., 2014, 9(11): e113455.

[168] HSAM S L K, HUANG X Q, ERNST F, HARTL L, ZELLER F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (L. em Thell). 5. Alleles at thelocus., 1998, 96: 1129-1134.

[169] SCHMOLKE M, MOHLER V, HARTL L, ZELLER F J, HSAM S L K. A new powdery mildew resistance allele at thewheat locus transferred from einkorn ()., 2012, 29(2): 449-456.

[170] SHI A N, LEATH S, MURPHY J P. A major gene for powdery mildew resistance transferred to common wheat from wild eikorn wheat., 1998, 88(2): 144-147.

[171] THE T T. MCINTOSH R A, BENNETT F G A. Cytogenetical studies in wheat. IX. Monosomic analysis, telocentric mapping and linkage relationship of gene,and., 1979, 32: 115-125.

[172] LAW C N, WOLFE M S. Location for genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat., 1966, 8: 462-470.

[173] PIARULLI L, GADALETA A, MANGINI G, SIGNORILE M A, PASQUINI M, BLANCO A, SIMEONE R. Molecular identification of a powdery mildew resistance gene on chromosome 2BS fromssp.., 2012, 196: 101-106.

[174] MOHLER V, BAUER C, SCHWEIZER G, KEMPF H, HART L.: a new powdery mildew resistance gene in common wheat derived from cultivated emmer., 2013, 54(3): 259-263.

[175] READER S M, MILLER T E. The introduction into breed wheat of a major gene for resistance to powdery mildew from wild emmer wheat., 1991, 53(1): 57-60.

[176] RONG J K, MILLET E, MANISTERSKI J, FELDMAN M. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping., 2000, 115: 121-126.

[177] LIU Z, SUN Q, NI Z, NEVO E, YANG T. Molecular characterization of a novel powdery mildew resistance genein wheat originating from wild emmer., 2002, 123(1): 21-29.

[178] BLANCO A, GADALETA A, CENCI A, CARLUCCIO A, ABDELBACKI A M M, SIMEONE R. Molecular mapping of the novel powdery mildew resistance geneintrogressed fromvar.in durum wheat., 2008, 117: 135-142.

[179] LI G, FANG T, ZHANG H, XIE C, LI H, YANG T, NEVO E, FAHIMA T, SUN Q, LIU Z. Molecular identification of a new powdery mildew resistance geneon chromosome 3BL derived from wild emmer (var.)., 2009, 119: 531-539.

[180] HUA W, LIU Z, ZHU J, XIE C, YANG T, ZHOU Y, DUAN X, SUN Q, LIU Z. Identification and genetic mapping of, a new recessive wheat powdery mildew resistance gene derived from wild emmer (var.)., 2009, 119: 223-230.

[181] ZHANG D Y, ZHU K Y, DONG L L, LIANG Y, LI G Q, FANG T L, GUO G H, WU Q H, XIE J Z, CHEN Y X, LU P, LI M M, ZHANG H Z, WANG ZX, Zhang Y, SUN Q X, LIU Z Y. Wheat powdery mildew resistance genederived from wild emmervar.) is tightly linked in repulsion with stripe rust resistance gene., 2019, 7: DOI: 10.1016/j. cj.2019.03.003.

[182] ZELLER F J, HSAM S L K. Progress in breeding for resistance to powdery mildew in common wheat (L.) // Slinkard A E. ed.. Vol.1. Saskatoon, Canada: University Extension Press, 1998: 178-180.

[183] ZOU S, WANG H, LI Y, KONG Z TANG D. The NB-LRR geneconfers powdery mildew resistance in wheat., 2018, 218(1): 298-309.

[184] JORGENSEN J H. Genefor resistance to powdery mildew in wheat., 1973, 22: 43.

[185] JARVE K, PEUSHA H O, TSYMBALOVA J , TAMM S, DEVOS K M, ENNO T M. Chromosomal location of a- derived powdery mildew resistance gene transferred to common wheat., 2000, 43(2): 377-381.

[186] PERUGINI L D, MURPHY J P, MARSHALL D, BROWN- GUEDIRA G., a new broadly powdery mildew resistance gene from, 2008, 116: 417-425.

[187] QI L L, PUMPHREY M O, FRIEBE B, CHEN P D, GILL B S. Molecular cytogenetic characterization of alien introgressions with genefor resistance to Fusariumhead blight disease of wheat., 2008, 117(7): 1155-1166.

[188] CAINONG J C, BOCKUS W W, FENG Y, CHEN P, QI L, SEHGAL S K, DANILOVA T V, KOO D H, FRIEBE B, GILL B S. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease fromto wheat., 2015, 128(11): 1-9.

[189] GUO J, ZHANG X, HOU Y, CAI J, KONG L. High-density mapping of the major FHB resistance genederived fromand its pyramiding withby marker-assisted selection., 2015, 128(11): 2301-2316.

[190] TAGLE A G, CHUMA I, TOSA Y., a new gene for resistance toisolates ofidentified in tetraploid wheat., 2015, 105(4): 495-499.

[191] SIMON M R, KHLESTKINA E K, CASTILLO N S, BORNER A. Mapping quantitative resistance to septoria tritici blotch in spelt wheat., 2010, 128(3): 317-324.

[192] TADESSE W, HSAM S L K, WENZEL G, ZELLER F J. Chromosome location of a gene conferring resistance toin Ethiopian wheat cultivars., 2008, 162(3): 423-430.

[193] TADESSE W, SCHMOLKE M, MOHLER V, WENZEL G, Hsam S L K, ZELLER F J. Molecular mapping of resistance genes to tan spot (race 1) in synthetic wheat lines., 2007, 114: 855-862.

[194] SINGH P K, MERGOUM M, GONZALEZ-HERNANDZ J L, ALI S, ADHIKARI T B, KIANIAN S F, ELIAS E M, HUGHES G R. Genetics and molecular mapping of resistance to necrosis inducing race 5 ofin tetraploid wheat., 2008, 21(3): 293-304.

[195] MCINTOSH R A, DUBCOVSKY J, ROGERS W J, XIA X C, RAUPP W J. Catalogue of gene symbols for wheat: 2019 supplement//Raupp W J. ed.. Manhattan, USA, 2019, 65: 98-113.

[196] BURT C, NICHOLSON P. Exploiting co-linearity among grass species to map the-derivedeyespot resistance in wheat and establish its relationship to., 2011, 123(8): 1387-1400.

[197] MURRAY T D, DE LA PENA R C, YILDIRIM A, JONES S S. A new source of resistance to, cause of eyespot disease of wheat, located on chromosome 4V of, 1994, 113 (4): 281-286.

[198] ZHANG Q, LI Q, WANG X, WANG H, LANG S, WANG Y, WANG S, CHEN P, LIU D. Development and characterization of atranslocation line T4VS⋅4DL conferring resistance to wheat spindle streak mosaic virus., 2005, 145(3): 317-320.

[199] Friebe B, Qi L L, Wilson D L, CHANG Z J, SEIFERS D L, MARTIN T J, KRITZ A K, GILL B S. Wheat-recombinants resistant to wheat streak mosaic virusandmosaic virus., 2009, 49(4): 1221-1226.

[200] DANILOVA T V, ZHANG G, LIU W, FRIEBE B, GILL B S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus andmosaic virus resistance genefromto wheat., 2017, 130(3): 549-556.

[201] XIN Z, XU H, CHEN X, LIN Z, ZHOU G, QIAN Y, CHEN Z, LARKIN P J, BANKS P, APPELS R, GLARKE B, BRETTELL R I S. Development of common wheat germplasm resistant to barley yellow dwarf virus by biotecnology.(), 1991, 21(9): 36-42.

[202] AYALA-NAVARRETE L, THOMPSON N, OHM H, ANDERSON J. Molecular markers show a complex mosaic pattern of wheat-translocations carrying resistance to YDV., 2010, 121(5): 961-970.

[203] KOZUB N A, SOZINOV I A, KARELOV A V, BLUME YA B, SOZINOV A A. Diversity of Ukrainian winter common wheat varieties with respect to storage protein loci and molecular markers for disease resistance genes., 2017, 51(2): 117-129.

[204] 陈静, 任正隆. 四川栽培小麦新品种(系)中的1RS/1BL染色体易位.四川大学学报(自然科学版), 1996, 33(增刊): 16-20.

CHEN J, REN Z L. 1RS/1BL Chromosome translocation in new cultivated wheat varieties (lines) in Sichuan Province.. 1996, 33(Suppl.): 16-20. (in Chinese)

[205] 杨足君, 傅体华, 任正隆. 外源抗白粉病基因向四川小麦的转移与利用. 四川大学学报(自然科学版), 1998, 35: 46-49.

YANG Z J, FU T H, REN Z L. Transfer and utilization of exogenous powdery mildew resistance genes to Sichuan wheat., 1998, 35: 46-49. (in Chinese)

[206] HAO C Y, DONG Y, WANG L, YOU G, ZHANG H, GE H, JIA J, ZHANG X. Genetic diversity and construction of core collection in Chinese wheat genetic resources., 2008, 53(10): 1518-1526.

[207] TAHIR R, BUX H, KAZI A G, RASHEED A, NAPAR A A, AJMAL S U, MUJEEB-KAZI A. Evaluation of Pakistani wheat germplasm for T1BL.1RS chromosome translocation., 2014, 16: 421-432.

[208] LANDJEVA S, KORZUM V, GANEVA G. Evaluation of genetic diversity among Bulgarian winter wheat (L.) varieties during the period 1925-2003 using microsatellites., 2006, 53: 1605-1614.

[209] PURNHAUSER L, BONA L, LANG L. Occurrence of 1BL.1RS wheat-rye chromosome translocation and theresistance gene cluster in wheat cultivars registered in Hungary., 2011, 179: 287-295.

[210] SCHLEGEL R. Current list of wheats with rye and alien introgression. 2011, 5/8: 1-14. http://www.rye-gene-map.de/rye-introgression/index. html.

[211] LUKASZEWSKI A J, GUSTAFSON J P. Translocations and modifications of chromosomes in triticale×wheat hybrids., 1983, 64(3): 239.

[212] VILLAREAL R, RAJARAM S, MUJEEB‐KAZI A, DEL TORO E. The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheats (L.)., 1991, 106(1): 77-81.

[213] MOSTNY I I, SUDARCHUK L V, CHEBOTAR S V. Molecular- genetic evidence of wheat-rye chromosome substitution and translocation in wheat cultivars and introgression stocks., 2015, 25(65): 50-60.

[214] GRAYBOSCH R, BAI G, AMAND P S, SARATH G. Persistence of rye (L.) chromosome arm 1RS in wheat (L.) breeding programs of the Great Plains of North America., 2019, 66: 941-950.

[215] KOZUB N O, SOZINOV I O, KOLIUCHYĬ V T, VLASENKO V A, SOZINOV O O. Identification of 1AL/1RS translocation in winter common wheat varieties of Ukrainian breeding., 2005, 39(4): 20-24.

[216] WENG Y, AZHAGUVEL P, DEVKOTA R N, RUDD J C. PCR-based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat-rye translocations in wheat background., 2010, 126(5): 482-486.

[217] HSAMSL K, CERMEO M C, FRIEBE B, ZELLER F J. Transfer of Amigo wheat powdery mildew resistance genefrom T1AL·1RS to the T1BL·1RS wheat-rye translocated chromosome., 1995, 74(5): 497-501.

[218] 向齐君, 盛宝钦, 段霞瑜, 周益林. 小麦白粉病抗源材料的有效抗病基因分析. 华北农学报, 1996, 11(4): 43-47.

XIANG Q J, SHENG B Q, DUAN X Y, ZHOU Y L. Analysis of effective wheat powdery mildew resistance genes of wheat resistance lines., 1996, 11(4): 43-47. (in Chinese)

[219] YANG Z J, REN Z L. Chromosomal distribution and genetic expression of(Host) A. Löve genes for adult plant resistance to stripe rust in wheat background., 2001, 48(2): 183-187.

[220] 韩德俊, 康振生. 中国小麦品种抗条锈病现状及存在问题与对策. 植物保护, 2018, 44(5): 6-17.

HAN D J, KANG Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China., 2018, 44(5): 6-17. (in Chinese)

[221] QI W, TANG Y, ZHU W, LI D, DIAO C, XU L, ZENG J, WANG Y, FAN X, SHA L. Molecular cytogenetic characterization of a new wheat-rye 1BL/1RS translocation line expressing superior stripe rust resistance and enhanced grain yield., 2016, 244(2): 405-416.

[222] 晏本菊, 张怀琼, 任正隆. 黑麦碱基因()表达缺失的1RS/ 1BL易位系的鉴定. 遗传, 2005, 27(4): 513-517.

YAN B J, ZHANG H Q, REN Z L. Molecular cytogenetic identification of a new 1RS/1BL translocation line with secalin absence., 2005, 27(4): 513-517. (in Chinese)

[223] ANUGRAHWATI D R, SHEPHERD K W, VERLIN D C, ZHANG P, MIRZAGHADERI G, WALKER E, FRANCKI M G, DUNDAS I S. Isolation of wheat-rye 1RS recombinants that break the linkage between the stem rust resistance geneand secalin., 2008, 51(51): 341-349.

[224]钱鹏, 刘汉梅, 陈洋尔, 罗培高, 唐宗祥, 杜小刚, 任正隆, 张怀渝. 一个黑麦碱基因表达缺失的抗白粉病新材料的鉴定和抗源分析. 麦类作物学报, 2014, 34(7): 936-943.

QIAN P, LIU H M, CHEN Y E, LUO P G, TANG Z X, DU X G, REN Z L, ZHANG H Y. Molecular cytogenetic identification of novel powdery mildew resistance and 1BL/1RS translocation line with secalin absence., 2014, 34(7): 936-943. (in Chinese)

[225] GRAYBOSCH R, PETERSON C, BAENZIGER P, BALTENSPERGER D, NELSON L, JIN Y, KOLMER J, SEABOURN B, FRENCH R, HEI G, MARTIN T, BEECHER B, SCHWARZACHER T, HESLOP-HARRISON P. Registration of ‘Mace’ hard red winter wheat., 2009, 3: 51-56.

[226] CRUZ C D, PETERSON G L, BOCKUS W W, KANKANALA P, DUBCOVSKY J, JORDAN K W, AKHUNOV E, CHUMLEY F, BALDELOMAR F D, VALENT B. The 2NS translocation fromconfers resistance to thepathotype of, 2016, 56(3): 990-1000.

[227] MCINTOSH R, WEILLINGS C, PARK R.. Melbourne, Australia: CSIRO Press, 1995: 1-200.

[228] WELLINGS C, BARIANA H, BANSAL U, PARK R. Expected responses of Australian wheat and Triticale varieties to the cereal rust diseases in 2012., 2012, 101(1): 1-5.

[229] ROBERT O, ABELARD C, DEDRYVER F. Identification of molecular markers for the detection of the yellow rust resistance gene, 1999, 5(2): 167-175.

[230] 佳瑞, 马占鸿. 我国主栽小麦品种抗条锈病基因的分子检测//中国植物病理学会2018年学术年会论文集. 2018.

JIA R, MA Z H. Molecular detection of stripe rust resistance gene in main wheat cultivars of China//. 2018. (in Chinese)

[231] 贾举庆, 雷孟平, 刘成, 李光蓉, 杨足君. 小麦抗条锈基因的新SCAR标记的建立与应用. 麦类作物学报, 2010, 30(1): 11-16.

JIA J Q, LEI M P, LIU C, LI G R, YANG Z J. Exploitation and application of a new SCAR marker linked to stripe rust resistance gene, 2010, 30(1): 11-16. (in Chinese)

[232]薛文波, 许鑫, 穆京妹, 王琪琳, 吴建辉, 黄丽丽, 康振生, 韩德俊. 中国小麦主栽品种抗条锈性评价与基因分析. 麦类作物学报, 2014, 34(8): 1054-1060.

XUE W B, XU X, MU J M, WANG Q L, WU J H, HUANG L L, KANG Z S, HAN D J. Evaluation of stripe rust resistance and genes in Chinese elite wheat varieties., 2014, 34(8): 1054-1060. (in Chinese)

[233] 李峰奇, 韩德俊, 魏国荣, 曾庆东, 康振生. 黄淮麦区小麦品种基因簇的分子检测. 西北农林科技大学学报(自然科学版), 2009, 37(3):151-158.

LI F Q, HAN D J, WEI G Q, ZENG Q D, KANG Z S. Identification of, 2009, 37(3): 151-158. (in Chinese)

[234] 张林, 张梦雅, 高颖, 许换平, 刘成, 刘建军, 闫红飞, 刘大群. 山东省12个主栽小麦品种(系)抗叶锈性分析. 植物遗传资源学报, 2017, 18(4): 676-684.

ZHANG L, ZHANG M Y, GAO Y, XU H P, LIU C, LIU J J, YAN H F, LIU D Q. Analysis of leaf rust resistance in 12 main wheat cultivars (lines) in Shandong., 2017, 18(4): 676-684. (in Chinese)

[235] 李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002.

LI Z Q, ZENG S M.. Beijing: China Agriculture Press, 2002. (in Chinese)

[236] BAYLES R A, FLATH K, HOVMOLLER M S, VALLAVIEILLE- POPE C. Breakdown of theresistance to yellow rust of wheat in northern Europe., 2000, 20(7): 805-811.

[237] 李振声, 陈潄阳, 刘冠军, 李容玲. 小麦与偃麦草远缘杂交的研究. 科学通报, 1962, 7(4): 40-42.

LI Z S, CHEN S Y, LIU G J, LI R L. A study on the distant cross of wheat and agropyron., 1962, 7(4): 40-42. (in Chinese)

[238] 辛志勇, 徐惠君, 陈孝, 林志珊. 应用生物技术向小麦导入黄矮病抗性的研究. 中国科学, 1991, 1: 36-42.

XIN Z Y, XU H J, CHEN X, LIN Z S. Study on introducing resistance to yellow dwarf disease into wheat by biotechnology., 1991, 1: 36-42. (in Chinese)

[239] HAN F, LIU B, FEDAK G, LIU Z. Chromosomal variation, constitution of five partial amphiploids of wheat-detected by GISH, seed storage protein marker and multicolor GISH., 2004, 109: 1070-1076.

[240] 庄丽芳, 亓增军, 陈佩度, 冯祎高, 刘大均. 普通小麦与百萨偃麦草染色体易位系的选育与鉴定. 中国农业科学, 2003, 36(12): 1432-1436.

ZHUANG L F, QI Z J, CHEN P D, FENG W G, LIU D J. Development and identification ofL.-Love chromosome translocations., 2003, 36(12): 1432-1436. (in Chinese)

[241] 王长有, 吉万全, 薛秀庄, 王秋英. 小麦-中间偃麦草异附加系条锈病抗性的研究. 西北植物学报, 1999, 19(6): 54-58.

WANG C Y, JI W Q, XUE X Z, WANG Q Y. Studies on yellow rust resistance of-alien disomic addition line., 1999, 19(6): 54-58. (in Chinese)

[242] 王洪刚, 朱军, 刘树兵. 利用细胞学和RAPD技术鉴定抗病小偃麦易位系. 作物学报, 2001, 27(6): 886-890.

WANG H G, ZHU J, LIU S B. Identification oftranslocation line with disease resistance by cytology and RAPD analysis., 2001, 27(6): 886-890. (in Chinese)

[243] YANG Z J, LI G R, CHANG Z J, ZHOU J P, REN Z L. Characterization of a partial amphiploid betweencv. Chinese Spring andssp.., 2006, 149(1/2): 11-17.

[244] ZHANG X, SHEN X, HAO Y, CAI J, OHM H W, KONG L. A genetic map ofchromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust., 2011, 122(2): 263-270.

[245] 任正隆. 黑麦种质导入小麦及其在小麦育种中的利用方式. 中国农业科学, 1991, 24(3): 18-25.

REN Z L. Introduction of rye chromatin into wheat and its breeding behavior., 1991, 24(3): 18-25. (in Chinese)

[246] 刘登才, 郑有良, 魏育明, 兰秀锦, 颜泽洪, 周永红. 将秦岭黑麦遗传物质导入普通小麦的研究. 四川农业大学学报, 2002, 20(2): 75-77.

LIU D C, ZHENG Y L, WEI Y M, LAN X J, YAN Z H, ZHOU Y H. Transferring the genetic base of qinling rye into wheat., 2002, 20(2): 75-77. (in Chinese)

[247] AN D G, LI L H, LI J M, LI H J, ZHU Y G. Introgression of resistance to powdery mildew conferred by chromosome 2R by crossing wheat nullisomic 2D with rye., 2006, 48(7): 838-847.

[248] 李爱霞, 亓增军, 裴自友, 庄丽芳, 冯祎高, 王秀娥. 普通小麦辉县红-荆州黑麦异染色体系的选育及其梭条花叶病抗性鉴定. 作物学报, 2007, 33(4): 639-645.

LI A X, QI Z J, PEI Z Y, ZHUANG L F, FENG W G, WANG X E. Development and WSSMV resistance identification of wheat landrace Huixianhong alien chromosome lines derived from rye cultivar Jingzhouheimai., 2007, 33(4): 639-645. (in Chinese)

[249] LIU C, YANG Z J, LI G R, ZENG Z X, ZHANG Y, ZHOU J P, LIU Z H, REN Z L. Isolation of a new repetitive DNA sequence fromenables targeting ofchromatin in wheat background., 2008, 159(1/2): 249-258.

[250] 唐宗祥, 符书兰, 任正隆, 张怀琼. 小麦-黑麦双二倍体形成过程中微卫星序列的变化. 麦类作物学报, 2008, 28(2): 197-201.

TANG Z X, FU S L, REN Z L, ZHANG H Q. Microsatellite sequence variation of wheat-rye amphiploids detected by SSR markers., 2008, 28(2): 197-201. (in Chinese)

[251] 吴金华, 王新茹, 王长有, 王秋英, 吉万全. 含抗白粉病新基因普通小麦-黑麦1R二体异附加系的遗传学鉴定. 农业生物技术学报, 2009, 17(1): 153-158.

WU J H, WANG X R, WANG C Y, WANG Q Y, JI W Q. Genetic identification of wheat-rye 1R alien disomic additional line with novel resistant gene to powdery mildew., 2009, 17(1): 153-158. (in Chinese)

[252] FU S, CHEN L, WANG Y, LI M, YANG Z, QIU L, YAN B, REN Z, TANG Z. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes., 2015, 5: 10552.

[253] YANG Z J, LIU C, FENG J, LI G R, ZHOU J P, DENG K J, REN Z L. Studies on genome relationship and species‐specific PCR marker forin Triticeae., 2006, 143(2): 47-54.

[254] HAN H, BAI L, SU J, ZHANG J, SONG L, GAO A, YANG X, LI X, LIU W, LI L. Genetic rearrangements of six wheat-6P addition lines revealed by molecular markers., 2014, 9(3): e91066.

[255] YE X, LU Y, LIU W, CHEN G, HAN H, ZHANG J, YANG X, LI X, GAO A, LI L. The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-chromosome 5A/6P translocation lines., 2015, 128(5): 797-811.

[256] 李家洋. 李振声论文选集, 北京: 科学出版社, 2007.

LI J Y.. Beijing: Science Press, 2007. (in Chinese)

[257] 王义芹, 谭伟, 杨兴洪, 李滨, 童依平, 李振声. 不同年代小麦品种旗叶的光合特性及抗氧化酶活性研究. 西北植物学报, 2007, 27(12): 2484-2490.

WANG Y Q, TAN W, YANG X H, LI B, TONG Y P, LI Z S. Photosynthetic characteristics and the activities of antioxidative enzymes in flag leaves of wheat cultivars released in different period., 2007, 27(12): 2484-2490. (in Chinese)

[258] 李万隆, 李振声. 小麦品种小偃6号染色体结构变异的细胞学研究. 遗传学报, 1990, 17(6): 430-437.

LI W L, LI Z S. A cytological study of chromosomal structure changes in a common wheat variety, Xiaoyan No. 6., 1990, 17(6): 430-437. (in Chinese)

[259] 任志龙, 吉万全, 赵会贤, 薛秀庄. 面包专用粉小麦新品种陕麦150的选育与产业化开发. 麦类作物学报, 2000, 20(1): 74-77.

REN Z L, JI W Q, ZHAO H X, XUE X Z. Development and industrial exploitation of a new bread wheat variety Shaanmai 150., 2000, 20(1): 74-77. (in Chinese)

[260] 刘新伦, 王超, 牛丽华, 刘志立, 张录德, 陈春环, 张荣琦, 张宏, 王长有, 王亚娟, 田增荣, 吉万全. 普通小麦-十倍体长穗偃麦草衍生新品种抗赤霉病基因的分子鉴别. 中国农业科学, 2017, 50(20): 3908-3922.

LIU X L, WANG C, NIU L H, LIU Z L, ZHANG L D, CHEN C H, ZHANG R Q, ZHANG H, WANG C Y, WANG Y J, TIAN Z R, JI W Q. Molecular identification of FHB resistance gene in varieties derived from common wheat-partial amphiploid., 2017, 50(20): 3908-3922. (in Chinese)

[261] 张增艳, 辛志勇. 抗黄矮病小麦生物技术育种研究进展. 作物杂志, 2005, 5: 4-7.

ZHANG Z Y, XIN Z Y. Advances in biotechnology breeding of wheat resistant to yellow dwarf disease., 2005, 5: 4-7. (in Chinese)

[262] 范绍强, 谢咸升, 郑王义, 李峰. 小麦抗黄矮病遗传育种研究进展. 中国生态农业学报, 2008, 16(1): 241-244.

FAN S Q, XIE X S, ZHENG W Y, LI F. Advances in barley yellow dwarf virus resistance heredity in wheat breeding., 2008, 16(1): 241-244. (in Chinese)

[263] 孙善澄, 孙玉, 袁文业, 阎文泽, 裴自友, 张美荣, 白云凤. 优质黑粒小麦76的选育及品质分析. 作物学报, 1999, 25(1): 50-54.

SUN S C, SUN Y, YUAN W Y, YAN W Z, PEI Z Y, ZHANG M R, BAI Y F. Breeding and qualitative analysis for black grain wheat 76 of superior quality., 1999, 25(1): 50-54. (in Chinese)

[264] 孙玉, 孙善澄, 刘少翔, 闫贵云, 郭庆. 高营养饲粮兼用全黑小麦的选育. 山西农业科学, 2009, 37(12): 3-6.

SUN Y, SUN S D, LIU S X, YAN G Y, GUO Q. Selection of high nutritive feed-food dual-purposed all black wheat., 2009, 37(12): 3-6. (in Chinese)

[265] 齐莉莉, 陈佩度, 刘大钧, 周波, 张守中, 盛宝钦, 向齐君, 段霞渝, 周益林. 小麦白粉病新抗源-基因. 作物学报, 1995, 21(3): 257-262.

QI L L, CHEN P D, LIU D J, ZHOU B, ZHANG S Z, SHENG B Q, XIANG Q J, DUAN X Y, ZHOU Y L. The gene-a new source for resistance to wheat powdery mildew., 1995, 21(3): 257-262. (in Chinese)

[266] 陈佩度, 张守忠, 王秀娥, 王苏玲, 周波, 冯祎高, 刘大钧. 抗白粉病高产小麦新品种南农9918. 南京农业大学学报, 2002, 25(4): 105-106.

CHEN P D, ZHANG S Z, WANG X E, WANG S L, ZHOU B, FENG W G, LIU D J. New wheat variety Nannong 9918 with high yield and powdery mildew resistance., 2002, 25(4): 105-106. (in Chinese)

[267] 李桂萍, 陈佩度, 张守忠, 赵和. 小麦-簇毛麦6VS/6AL易位染色体对小麦农艺性状的影响. 植物遗传资源学报, 2011, 12(5): 744-749.

LI G P, CHEN P D, ZHANG S Z, ZHAO H. Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat., 2011, 12(5): 744-749. (in Chinese)

[268] 任天恒, 陈放, 张怀琼, 晏本菊, 任正隆. 1RS.1BL易位在川农号系列小麦新品种选育中的作用. 麦类作物学报, 2011, 31(3): 430-436.

REN T H, CHEN F, ZHANG H Q, YAN B J, REN Z L. Application of 1RS.1BL translocation in the breeding of “Chuannong” series wheat cultivars., 2011, 31(3): 430-436. (in Chinese)

[269] ZHANG P L, HAO Y L, YANG J, LUO Y, REN Z L. Analysis of the relationship between agronomic traits and disease resistance of wheat varieties-Chuannong., 2012, 3(1): 12-15.

[270] 吉万全, 王秋英, 王长有, 任志龙, 张宏, 蔡东明, 王亚娟, 薛秀庄. 优质抗病丰产小麦新品种-远丰175. 麦类作物学报, 2006, 26(4): 175.

JI W Q, WANG Q Y, WANG C Y, REN Z L, ZHANG H, CAI D M, WANG Y J, XUE X Z. High quality, disease resistant and high yielding wheat variety-Yuanfeng 175., 2006, 26(4): 175. (in Chinese)

[271] GUO J, HE F, CAI J J, WANG H W, LI A F, WANG H G, KONG L R. Molecular and cytological comparisons of chromosomes 7el1, 7el2, 7Ee, and 7Eiderived from., 2015, 145(1): 68-74.

[272] HAN F, LI J. Morphology and cytogenetics of intergeneric hybrids of crossingandwith tetraplloid., 1993, 20(5): 44-49.

[273] FU S, LV Z, QI B, GUO X, LI J, LIU B, HAN F. Molecular cytogenetic characterization of wheat-addition, substitution and translocation lines with a novel source of resistance to wheat fusarium head blight., 2012, 39(2): 103-110.

[274] WAN A, ZHAO Z, CHEN X, HE Z, JIN S, JIA Q, YAO G, WANG B, LI G, BI Y, YUAN Z. Wheat stripe rust epidemic and virulence off. sp.in China in 2002., 2004, 88(8): 896-904.

[275] 何中虎, 夏先春, 陈万权. 小麦对秆锈菌新小种Ug99的抗性研究进展. 麦类作物学报, 2008, 28(1): 170-173.

HE Z H, XIA X C, CHEN W Q. Breeding for resistance to new race Ug99 of stem rust pathogen., 2008, 28(1): 170-173. (in Chinese)

[276] ZHANG H, GUAN H, LI J, XIE C, DUAN X, ZHOU Y, YANG T, SUN Q, LIU Z. Genetic and comparative genomics mapping reveals that a powdery mildew resistance geneoriginating from wild emmer co-segregates with an NBS-LRR analog in common wheat (L.)., 2010, 121: 1613-1621.

[277] NASUDA S, FRIEBE B, BUSCH W, KYNAST R G , Gill B S. Structural rearrangement in chromosome 2M ofhas prevented the utilization of the Compair and related wheat-translocations in wheat improvement., 1998, 96(6/7):780-785.

[278] MARAIS G F, BADENHORST P E, EKSTEEN A, PRETORIUS Z A. Reduction ofchromatin associated with resistance genesand, 2010, 171(1): 15-22.

[279] 王海燕, 赵仁慧, 袁春霞, 张守忠, 肖进, 王秀娥. 小麦-簇毛麦T4DL·4VS易位染色体对小麦农艺性状的影响. 麦类作物学报, 2012, 32(6): 1032-1036.

WANG H Y, ZHAO R H, YUAN C X, ZHANG S Z, XIAO J, WANG X E. Effects of theT4DL·4VS translocation chromosome on the agronomic important traits in different backgrounds., 2012, 32(6): 1032-1036. (in Chinese)

[280] 郭军, 李家前, 李豪圣, 王灿国, 刘爱峰, 程敦公, 曹新有, 刘建军, 赵振东, 宋健民. 高大山羊草染色体片段对小麦农艺和产量性状的影响. 麦类作物学报, 2019, 34):13-18.

GUO J, LI J Q, LI H S, WANG C G, LIU A F, CHENG D G, CAO X Y, LIU J J, ZHAO Z D, SONG J M. Effect ofchromatin carryingon wheat agronomic and yield-related traits., 2019, 39(4): 13-18. (in Chinese).

[281] KLYMIUK V, YANIV E, HUANG L, RAATS D, FATIUKHA A, CHEN S, FENG L, FRENKEL Z, KRUGMAN T, LIDZBARSKY G, CHANG W, JAASKELAINEN M, SCHUDOMA C, PAULIN L, LAINE P, BARIANA H, SELA H, SALEEM K, SORENSEN C, HOVMOLLER M, DISTELFELD A, CHALHOUB B, DUBCOVSKY J, KOROL A, SCHULMAN A, FAHIMA T. Cloning of the wheatresistance gene sheds light on the plant tandem kinase- pseudokinase family., 2018, 9: 3735.

[282] ZHANG C, HANG L, ZHANG H, HAO Q, LYU B, WANG M, EPSTEIN L, LIU M, KOU C, QI J, CHENG F, LI M, GAO G, NI F, ZHANG L, HAO M, WANG J, CHEN X, LUO M, ZHENG Y, WU J, LIU D, FU D. An ancestral NB-LRR with duplicated 3’UTRs confers stripe rust resistance in wheat and barley., 2019, DOI:10.1038/s41467-019-11872-9.

[283] FU D, UAUY C, DISTELFELD A, BLECHL A, EPSTEIN L, CHEN X, SELA H, FAHIMA T, DUBCOVSKY J. A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust., 2009, 323(5919): 1357-1360.

[284] HUANG L, BROOKS S A, LI W, FELLERS J, TRICK H, GILL B. Map-based cloning of leaf rust resistance genefrom the large and polyploid genome of bread wheat., 2003, 164(2): 655-664.

[285] ZHANG W, CHEN S, ABATE Z, NIRMALA J, ROUSE M, DUBCOVSKY J. Identification and characterization of, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group., 2017, 114(45): E9483-E9492.

[286] CHEN S, ZHANG W, BOLUS S, ROUSE M, DUBCOVSKY J. Identification and characterization of wheat stem rust resistance geneeffective against the Ug99 race group at high temperature., 2018, 14(4): e1007287.

[287] SALCEDO A, RUTTER W, WANG S, AKHUNOVA A, BOLUS S, CHAO S, ANDERSON N, DE SOTO M, ROUSE M, SZABO L, BOWDEN R, DUBCOVSKY J, AKHUNOV E. Variation in thegene determinesresistance against wheat stem rust race Ug99., 2017, 358(6370): 1604-1606.

[288] CHEN S, ROUSE M, ZHANG W, ZHANG X, GUO Y, BRIGGS J, DUBCOVSKY J. Wheat geneencodes a protein with two putative kinase domains that confers resistance to stem rust., 2019, DOI: 10.1111/nph.16169

[289] HE H, ZHU S, ZHAO R, JIANG Z, JI Y, JI J, QIU D, LI H, BIE T., encoding a typical CC-NBS-LRR protein, confers broad- spectrum resistance to wheat powdery mildew disease., 2018, 11(6): 879-882.

[290] XING L, HU P, LIU J, WITEK K, ZHOU S, XU J, ZHOU W, GAO L, HUANG Z, ZHANG R, WANG X, CHEN P, WANG H, JONES J, KARAFIATOVA M, VRANA J, BARTOS J, DOLEZEL J, TIAN Y, WU Y, CAO A.fromencodes a CC-NBS- LRR that confers powdery mildew resistance in wheat., 2018, 11(6): 874-878.

Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization

LIU Cheng, HAN Ran, WANG XiaoLu, GONG WenPing, CHENG DunGong, CAO XinYou, LIU AiFeng, LI HaoSheng, LIU JianJun

(Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang-Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan 250100)

Wheat alien species are vast reservoir of diversity for disease and pest resistance as well as stress tolerance, which are excellent gene sources for wheat breeding. Through wide hybridization, the genes of alien species could be transferred to wheat to create wheat-alien chromosome lines such as amphiploids or partial amphiploids, additions, substitutions and translocation lines. These genetic stocks could be utilized to study chromosome behavior and genome evolution, mapping genes, and diversifying the genetic basis of wheat for diseases and pest resistance, as well as yield and quality improvement. In order to understand the progress of wheat wide hybridization and useful gene transfer from alien species to wheat, in this paper, the classification of the tribe Triticeae, the definition and significance of wheat wide hybridization, alien transfers progress from species belonging to genera,,,,,,,,andto wheat have been summarized and discussed. To date, the official designated genes originated from wheat alien species include 17 stripe rust resistance genes, 35 leaf rust resistance gens, 30 stem rust resistance genes, 41 powdery mildew resistance genes, 3 Fusarium head blight-resistance genes, one wheat blast resistance gene, one Septoria tritici blotch resistance genes, one Septoria nodorum blotch resistance gene, 4 tan spot resistance genes, 2 eyespot resistance genes, one wheat spindle streak mosaic virus resistance gene, 2 wheat streak mosaic virus resistance genes and 2 cereal yellow dwarf resistance genes. Names and the chromosomal locations of these disease resistance genes were inducted. Moreover, the utilization of these genes in wheat breeding has also been reviewed and summarized. In the history of world wheat breeding, disease resistant germplasms such as wheat-rye 1RS·1BL translocation, 1RS·1AL translocation and wheat-2NS/2AS translocation have made outstanding contributions. However, this only benefited from the utilization of a few disease resistant genes. Compared to the number of the designated genes, relatively few disease-resistant genes have been used in wheat breeding. In this paper, the limiting factors for the underutilization are discussed. Suggestions on how to use these disease-resistant genes in the future are put forward. Meanwhile, the cloned disease-resistant genes from wheat alien species are listed. The methods of cloning these genes and the possible research hotspots in the future are also analyzed. It is believed that the development and application of wheat-wild species translocation lines without genetic drag may be an important driving force for material innovation and variety breeding in the future.

wheat; wild hybridization; chromosome line; disease resistance gene; derived varieties

10.3864/j.issn.0578-1752.2020.07.001

2019-07-31;

2019-11-14

泰山学者工程专项经费(tsqn201812123)、山东省良种工程(2019LZGC016)、山东省自然科学基金(ZR2017MC004)

刘成,E-mail:lch6688407@163.com

(责任编辑 李莉)

猜你喜欢
麦草抗病染色体
小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定
我国小麦基因组编辑抗病育种取得突破
一根麦草
植物细胞内存在“自杀神器”
多一条X染色体,寿命会更长
为什么男性要有一条X染色体?
真假三体的遗传题题型探析
能忍的人寿命长
闪烁
麦草畏距离大宗除草剂还有多远