张飞飞 冯辉霞 陈娜丽 刘持欢 丁强 李文霞
摘 要:三维石墨烯具有丰富的孔洞结构、大的比表面积、高的导电率、快的充电速率和长的循环寿命等优异性质,将其与聚苯胺复合制备三维石墨烯/聚苯胺复合材料可以充分发挥石墨烯和聚苯胺的优势性能,制得电化学性能优异的复合材料。该复合材料在超级电容器电极材料领域得到了广泛的关注。综述了三维石墨烯/聚苯胺复合材料的制备方法及其电化学性能,并针对复合材料研究中存在的问题、未来的研究方向进行了展望。
关 键 词:復合材料;三维石墨烯;聚苯胺;电化学性能;超级电容器
中图分类号:TQ050.4+3 文献标识码: A 文章编号: 1671-0460(2020)03-0623-04
Research Progress in Preparation of Three-dimensional
Graphene/Polyaniline Composites and Their Applications in Supercapacitors
ZHANG Fei-fei, FENG Hui-xia, CHEN Na-li, LIU Chi-huan, DING Qiang, LI Wen-xia
(College of Petroleum and Chemical Engineering, Lanzhou University of Technology, Gansu Lanzhou 730050, China)
Abstract: Three-dimensional graphene has many excellent properties, such as fast charge rate, long cycle life, abundant pore structure, large specific surface area and high conductivity and so on. The three-dimensional graphene/polyaniline composites prepared by compounding three-dimensional graphene with polyaniline can give full play to the advantages of graphene and polyaniline and show excellent electrochemical properties, and the composites material have attracted wide attention in the field of electrode materials for supercapacitors. In this paper, the preparation methods and electrochemical properties of the three-dimensional graphene/polyaniline composites were reviewed. In view of the existing problems in the research of composite materials, the future research directions were prospected.
Key words: composite materials; three-dimensional graphene; polyaniline; electrochemical properties; supercapacitors
在当今社会,随着枯竭的化石燃料和日益严重的环境污染,迫切需要高效、清洁、可持续的新能源储能装置。超级电容器因功率密度高、循环寿命长、充电时间短和电容量高等优点[1],已成为国内外专家广泛关注的储能装置。根据能量储存机理的不同,超级电容器可分为双电层电容器(EDLC)[2-4]和赝电容电容器[5-7]。电极材料的电化学性能是决定超级电容器性能的关键因素。石墨烯是典型的双电层电容器电极材料,具有许多优异的性质,例如:比表面积大、电导率高和循环寿命长等[8,9]。但是,由于石墨烯片层间存在强烈的π-π相互作用,极易发生堆叠[10],极大地限制了石墨烯在超级电容器电极材料领域的应用。研究发现,构建三维结构可以有效抑制石墨烯的堆叠,提高电解质在其中的渗透率[11]。但是,三维石墨烯的比电容尚不高,将具有高电容量的赝电容电容器电极材料(如:导电聚合物[12]或金属氢氧化物[13])与其复合是提高其比电容的有效途径之一。其中,与导电聚合物复合研究的较为广泛。
聚苯胺(PANI)是一种典型的导电聚合物,由于具有高的理论比电容、易合成以及快速的掺杂/去掺杂能力[14]等优异性质,被广泛用作赝电容电容器电极材料。但是,单纯的PANI通常呈团聚结构,并且在重复掺杂/去掺杂化过程中会发生机械降解,使得PANI的实际比电容较低,循环稳定性较差[15]。将石墨烯与PANI进行三维复合,可以有效地抑制石墨烯的堆叠,降低 PANI的团聚,提高材料的比电容,可以改善PANI的循环稳定性,制得电化学性能优异的三维石墨烯/PANI复合材料[16,17]。近年来,该复合材料在超级电容器电极材料领域得到了广泛的研究。本文将简单阐述复合材料构建过程中三维石墨烯的制备方法,综述三维石墨烯/PANI复合材料的制备方法及其电化学性能,并针对复合材料研究中所存在的问题及未来的研究方向进行展望。
1 三维石墨烯的制备方法
在三维石墨烯/PANI复合材料的构建过程中常采用的三维石墨烯的制备方法为:自组装法[18,19]和模板导向法[20]。自组装法通常是利用氧化石墨烯(GO)还原形成的还原氧化石墨烯(RGO)的自组装制备三维石墨烯的。该法是构建三维石墨烯最有吸引力、最简单和最有效方法之一。模板导向法是先将石墨烯与模板复合,随后去除模板制备三维石墨烯。该法所制备三维石墨烯的结构、孔径和形貌通常可以通过改变模板的形貌来控制。但是,模板法制备三维石墨烯时模板去除不彻底,会影响其电化学性能。此外,制备三维石墨烯的方法还有化学气相沉积(CVD)法[21,22]、交联法[23,24]等。
2 三维石墨烯/PANI复合材料的制备方法及电化学性能
三维石墨烯/PANI复合材料通常具有丰富的孔洞结构,大的比表面积和高的电导率等特性。石墨烯与PANI三维结构的构建,可以抑制石墨烯的堆叠,增加PANI的分散性,增强PANI的机械性能,克服三维石墨烯比电容低和PANI循环稳定性差的缺陷,从而拥有优异的电化学性能[25,26]。该复合材料在超级电容器电极材料领域得到了广泛研究。目前,制备三维石墨烯/PANI复合材料常用的方法有:自组装法、原位聚合法、电化学聚合法和模板法等。
2.1 自组装法
自组装法是先将GO与PANI混合,随后还原制备三维石墨烯/PANI复合材料。GO与PANI的混合液由于GO基面的范德华力与官能团的静电斥力之间建立的平衡而具有良好的均一性,在适当的条件下对其进行还原会破坏此平衡,增强凝胶化,从而实现自组装,形成三维石墨烯/PANI复合材料。根据还原条件的不同,自组装法分为:化学还原诱导自组装法和水热还原诱导自组装法。
2.1.1 化学还原诱导自组装法
化学还原诱导自组装法通常是向 GO与PANI的混合液中加入还原剂(如:抗坏血酸钠、NaHSO3、HI、HQ和Na2S等)对其进行还原来制备三维石墨烯/PANI复合材料。Wu等[27]先将GO分散液与PANI纳米颗粒充分混合,得到GO与PANI的混合溶液;随后,以抗坏血酸为还原剂,90 ℃下对GO与PANI的混合液进行还原制备三维石墨烯/PANI复合材料。该复合材料呈多孔网络结构,可为电解质的扩散提供便捷的路径,在53.33 A/g的大电流密度下,表现出较高的比电容(808 F/g)。化学还原诱导自组装法在制备三维石墨烯/PANI复合材料时,通常需要大量的还原剂,并且产生的废液量较多,不利于环保。
2.1.2 水热还原诱导自组装法
水热还原诱导自组装法是将GO与PANI的混合液置于高温高压条件下进行还原来制备三维石墨烯/PANI复合材料。Yang等[28]将PANI纳米线与GO的混合液置于180 ℃下水热还原20 h制得三维石墨烯/PANI复合材料。该复合材料中PANI纳米线作为间隔物均匀地穿插在石墨烯片层之间,形成类似于三明治的三维立体结构,有效地抑制了石墨烯的堆叠,提高了PANI纳米线的分散性,赋予其良好的电化学性能。在电流密度为0.25 A/g时,复合材料的比电容为520.3 F/g;电流密度增加为2A/g时,复合材料的比电容保持率为64%;经过500次充放电后,复合材料的比电容保持率为100%。Xu等[29]先将尿素、PANI纳米棒和GO的分散液超声3 h;其次,将所得混合液于160℃水热还原5h制备具有多孔网络结构的三维氮掺杂石墨烯/PANI复合材料。该复合材料在电流密度为3 mA/cm2时,比电容为589.3 F/g;經过500次充放电后,比电容保持率为80.5%。水热还原诱导自组装法制备三维石墨烯/PANI复合材料操作简单,产生的废液量少,对环境污染小。
2.2 原位聚合法
根据制备流程的不同,原位聚合法可以分为两类:(1)先原位聚合后构建三维结构法;(2)先构建三维结构后原位聚合法。
2.2.1 先原位聚合后构建三维结构法
先原位聚合后构建三维结构法是苯胺单体(An)先在GO或功能化GO片层上原位聚合制得GO/PANI复合材料,再在分散液中对其进行还原制备三维石墨烯/PANI复合材料。Li等[30]先将An溶于甲苯溶液,记为溶液A;将过硫酸铵(APS)、浓盐酸依次加入到GO分散液中,记为溶液B;将溶液A加入到溶液B中引发An原位聚合制备GO/PANI复合材料,之后再加入一定量GO分散液,置于95 ℃下水热还原1.5 h制得三维石墨烯/PANI复合材料。该复合材料在电流密度为1A/g时,比电容高达777 F/g;电流密度增加为20A/g时,比电容保持率为86%;经过60 000次深度充放电后,比电容保持率仍为85%。Van等[31]先对GO进行氨基化处理制备氨基化的氧化石墨烯(GO-NH2);接着,在GO-NH2分散液中加入An,以APS为引发剂,原位聚合制得GO-g-PANI复合材料;最后,将GO-g-PANI分散液于180 ℃下水热还原6h制得三维RGO-g-PANI复合材料。该复合材料在12A/g的大电流密度下,比电容达到1 600 F/g;电流密度增加为19.5 A/g时,比电容保持率为83.5%;经过3 000次充放电后,比电容保持率为91.3%。三维RGO-g-PANI复合材料不仅表现出高的比电容,而且具有优异倍率性能及循环稳定性。
2.2.2 先构建三维结构后原位聚合法
先构建三维结构后原位聚合法是以预先构建的三维石墨烯为载体,采用原位聚合法在其三维结构上原位聚合An制备三维石墨烯/PANI复合材料。Xu等[32]以石墨烯水凝胶为载体,通过原位聚合法在石墨烯水凝胶上生长PANI制备三维石墨烯/PANI复合材料。该复合材料在电流密度为0.1 A/g时,比电容为546 F/g;经过5 000次充放电后,比电容保持率为85%。李等[33]以三维石墨烯为载体,十八胺(ODA)为功能化试剂,利用原位聚合法在氨基化的三维石墨烯上生长PANI制备了十八胺功能化的三维石墨烯/聚苯胺(3D-GODA/PANI)复合材料。3D-GODA/PANI复合材料可以直接作为工作电极,不需要添加任何黏结剂,这样保留了复合材料初始的比电容;并且该复合材料具有丰富的孔洞结构,缩短了电解质在其中的扩散路径,提高了复合材料的电导率。该复合材料在1 A/g的電流密度下,比电容达1 080 F/g;经过10 000次充放电后,比电容保持率为90.8%。先构建三维结构后原位聚合法制备三维石墨烯/PANI复合材料,不需要考虑GO片层复杂的功能化和分散性,有助于克服任何过程的不相容性,并且得到的复合材料通常表现出优异的电化学性能[12,34]。
2.3 电化学聚合法
电化学聚合法是近年来制备三维石墨烯/PANI复合材料比较热的方法之一[35],通常以预先制备的三维石墨烯为工作电极,采用电化学聚合法在其上沉积PANI制备三维石墨烯/PANI复合材料。Yang等[36]首先采用水热还原法制备了石墨烯气凝胶;随后以压有其片的不锈钢网为工作电极,An的H2SO4溶液为电解液,采用恒电流法使An在石墨烯气凝胶上发生聚合反应制备三维石墨烯/PANI复合材料。该复合材料在电流密度为1A/g时,比电容为432 F/g;经过10 000次充放电后,比电容保持率为85%。Yu等[37]先通CVD法制备了三维多孔结构的石墨烯,并将其制成工作电极,以An的HClO4的溶液为电解液,采用恒电流法制备了三维多孔石墨烯/PANI复合材料。该复合材料的孔洞结构丰富,并且孔径大小可以控制,在1 A/g的电流密度下,比电容为751.3 F/g;电流密度增加为10 A/g时,比电容保持率为88.5%,表现出优异的倍率性能;经过1 000次充放电后,比电容保持率为93.2%。电化学聚合法不需要借助氧化剂来完成聚合反应,绿色环保,而且PANI与石墨烯间的结合力强[38]。
2.4 模板法
模板法通常先将石墨烯和PANI复合于模板材料上(如:PMMA颗粒[39]、PS颗粒[40]等材料),随后去除模板材料制备三维石墨烯/PANI复合材料。Trung等[39]先以聚甲基丙烯酸甲酯(PMMA)胶体颗粒为模板材料制备PMMA/GO复合材料;其次,以PMMA/GO复合材料为载体,通过原位聚合法制备PMMA/GO/PANI复合材料;最后,去除PMMA模板,并以水合肼为还原剂还原三维GO/PANI复合材料制备三维石墨烯/PANI复合材料。该复合材料在1 A/g的电流密度下,比电容为331 F/g,经过500次充放电后,比电容保持率为86%。Luo等[41]先以磺化聚苯乙烯(PS)颗粒为模板,通过静电吸附作用将PANI吸附于PS颗粒上制得PANI@PS复合材料;随后,将RGO以相同方式吸附于PANI@PS复合材料上制备RGO-PANI@PS复合材料,这样经过多次层层组装制得 (RGO-PANI)n@PS复合材料;最后,去除PS模板制得三维空心结构的RGO-PANI复合材料。该复合材料在4 A/g的电流密度下,比电容为381 F/g;经过1 000次充放电后,比电容保持率为83%。模板法制备三维石墨烯/PANI复合材料的孔径、形貌可控制,是一种方便、有效的方法。但是,模板法制备三维复合材料时模板材料去除不彻底会影响其电化学性能。
3 结语
近年来,得益于合成方法的快速发展,各种结构、形貌及电化学性能优异的三维石墨烯/PANI复合材料已被广泛制备,并被用作超级电容器电极材料。三维石墨烯/PANI复合材料已成为新一代强大的超级电容器电极材料。但是,三维石墨烯/PANI复合材料的研究尚处于初级阶段,有很多问题需要解决。首先,需要进一步研究石墨烯与PANI三维组装的基本机理,以便开发出更优的制备策略。其次,三维结构中石墨烯与PANI的界面结合机理需要进一步研究,这样可深入了解结构与电化学性能的关系,以便通过结构的设计来有效地调控复合材料的电化学性能。最后,需要从经济、环保和规模化生产上考虑,努力实现三维石墨烯/PANI复合材料的市场化。
参考文献:
[1]Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1):1-12.
[2]Wang Y, Shi Z, Huang Y, et al. Supercapacitor devices based on graphene materials[J]. Journal of Physical Chemistry C, 2009, 113(30):13103-13107.
[3]Xu B, Wu F, Su Y, et al. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: balance between porosity and conductivity[J]. Electrochimica Acta, 2008, 53(26):7730-7735.
[4]Sharma P, Bhatti T S. A review on electrochemicaldouble-layer capacitors[J]. Energy Conversion and Management, 2010, 51(12):2901-2912.
[5]Ren X, Fan H, Ma J, et al. Hierarchical Co3O4/PANI hollow nanocages: synthesis and application for electrode materials of supercapacitors [J]. Applied Surface Science, 2018, 441(1):194-203.
[6]Li L, Lou Z, Han W, et al. Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes [J]. Advanced Materials Technologies, 2017, 2(3):1-8.
[7]Wang Y, Yang C, Liu P. Acid blue AS doped polypyrrole (PPy/AS) nanomaterials with different morphologies as electrode materials for supercapacitors[J]. Chemical Engineering Journal, 2011, 172(3):1137-1144.
[8]Chen N, Ren Y, Kong P, et al. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors[J]. Applied Surface Science, 2016, 392:71-79.
[9]Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2016, 448(7152):457-460.
[10]An J, Li J P, Chen W X, et al. Electrochemical study and application on shikonin at poly(diallyldimethylammonium chloride) functionalized graphene sheets modified glass carbon electrode[J]. 2013, 29(4):798-805.
[11]Mao S, Lu G, Chen J. Three-dimensional graphene-based composites for energy applications[J]. Nanoscale, 2015, 7(16):6924-6943.
[12]Wang M, Duan X, Xu Y, et al. Functional three-dimensional graphene/polymer composites[J]. Acs Nano, 2016, 10(8):7231-7247.
[13]Dong S, Dao A Q, Zheng B, et al. One-step electrochemical synthesis of three-dimensional graphene foam loaded nickel-cobalt hydroxides nanoflakes and its electrochemical properties[J]. Electrochimica Acta, 2015, 152(9): 195-201.
[14]Wang K, Huang J, Wei Z. Conducting polyaniline nanowire arrays for high performance supercapacitors[J]. J.phys.chem.c, 2010, 114(17): 8062-8067.
[15]Han X, Qiu H, Qiu F, et al. Facile route to covalently-jointed graphene/polyaniline composite and its enhanced electrochemical performances for supercapacitors[J]. Applied Surface Science, 2016, 376:261-268.
[16]Fan Z, Cheng Z, Feng J, et al. Ultrahigh volumetric performance of a free-standing compact N-doped holey graphene/PANI slice for supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(32):16689-16701
[17]Liu X, Shang P, Zhang Y, et al. Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2014, 2(37):15273-15278.
[18]Nguyen S T, Nguyen H T, Rinaldi A, et al. Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2012, 414(46): 352-358.
[19]Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15): 2219-2223.
[20]Kuang J, Liu L, Gao Y, et al. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor [J]. Nanoscale, 2013, 5(24):12171-12177.
[21]Xiehong Cao, Yumeng Shi, Wenhui Shi, et al. Preparation of novel 3D graphene networks for supercapacitor applications[J]. Small, 2011, 7(22):3163-3168.
[22]Yong Y C, Dong X C, Chanpark M B, et al. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells[J]. Acs Nano, 2012, 6(3):2394-2400.
[23]Han C, Zhen T, Dou H, et al. Vertical crosslinking MoS2/three-dimensional graphene composite towards high performance supercapacitor[J]. Chinese Chemical Letters, 2018, 29(4):66-71.
[24]Yang J, Gong D, Li G, et al. Self-Assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules[J]. Advanced Materials, 2018, 30(16):1-8.
[25]Fan Z, Cheng Z, Feng J, et al. Ultrahigh volumetric performance of a free-standing compact N-doped holey graphene/PANI slice for supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(32):16689-16701.
[26]Liu H, Yi W, Gou X, et al. Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications [J]. Materials Science & Engineering B, 2013, 178(5):293-298.
[27]Wu J, Qin,e Zhang, Wang J, et al. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors[J]. Energy & Environmental Science, 2018, 11(5): 1280-1286.
[28]Yang F, Xu M, Bao S J, et al. Self-assembled hierarchical graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage[J]. Electrochimica Acta, 2014, 137:381-387.
[29]Xu H, Liu J, Chen Y, et al. Synthesis of three-dimensional nitrogen-doped graphene/polyaniline hydrogels for high performance supercapacitor applications[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(14):10674-10683.
[30]Ke Li, Jingjing Liu, Yanshan Huang, et al. Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability[J]. Journal of Materials Chemistry A, 2017, 5(11): 5466-5474
[31]Van Hoa N, Quyen T T H, Van Hieu N, et al. Three-dimensional reduced graphene oxide-grafted polyaniline aerogel as an active material for high performance supercapacitors[J]. Synthetic Metals, 2016, 223:192-198
[32]Xu Y, Tao Y, Zheng X, et al. Supercapacitors: A Metal-Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm-3[J]. Advanced Materials, 2016, 27(48):7898-7898.
[33]李學航, 俞慧涛, 王伟仁, 等. 自支撑三维功能化石墨烯/聚苯胺电极材料的制备及超级电容性能 [J]. 高等学校化学学报, 2017(12):182-188.
[34]Yu P, Zhao X, Huang Z, et al. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(35):14413-14420.
[35]Zhou Q, Li Y, Huang L, et al. Three-dimensional porous graphene/ polyaniline composites for high-rate electrochemical capacitors[J]. Journal of Materials Chemistry A, 2014, 2(41):17489-17494.
[36]Yang Y, Xi Y, Li J, et al. Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes[J]. Nanoscale Research Letters, 2017, 12(1):394-499.
[37]Yu M, Ma Y, Liu J, et al. Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for supercapacitor electrodes[J]. Carbon, 2015, 87:98-105.
[38]傅深娜, 馬利, 陈红冲, 等. 三维(3D)石墨烯-聚苯胺复合材料在超级电容器中的研究进展[J]. 化工新型材料, 2017(01):13-15.
[39]Trung N B, Tam T V, Kim H R, et al. Three-dimensional hollow balls of graphene-polyaniline hybrids for supercapacitor applications[J]. Chemical Engineering Journal, 2014, 255:89-96.
[40]Fan W, Zhang C, Tjiu W W, et al. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications[J]. Applied Materials & Interfaces, 2013, 5 (8): 3382-3391.
[41]Luo J, Ma Q, Gu H.H, et al. Liu Three-dimensional graphene- polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor[J]. Electrochimica Acta, 2015, 173 (1): 184-192.