刘爽
(国网北京服务中心综合管理部,北京100053)
为了缓解电力资源紧张的趋势,则需不断提升电力系统自动化水平。在电力系统中引入智能技术,不仅能够改善电力自动化的建设,使其具有智能化性能,而且能够增强电力自动化控制功能,从而实现电力资源的有效利用。
智能技术主要包括神经网络控制、综合智能控制、专家系统控制等手段。当前,智能技术已被应用到各个行业。在电力系统自动化中,智能化的技术被应用到各个阶段,包括生产、传送、调度、管理等阶段,并发挥着重要的作用。既能促进电力系统的生产全过程,又能进行自动监控,及时发现问题并控制处理,从而保障电力系统的正常运行。
电力系统自动化是借助计算机信息技术,对电力系统进行控制的一项技术。基于电力系统自动化的构建,使得电力系统具有自动控制、检测与管理等功能,从而实现电能生产运行各阶段的自动化调度和管理,极大程度上保障了电力系统运行的可靠性、安全性[1]。在新时期,为了更好地发展电力系统自动化,则需要引入先进的技术,如智能技术,从而达到推进电力事业持续发展的目的。
模糊控制的应用是通过一种模糊的宏观控制系统实现的,即在自动化目标明确的前提下,有效运用模糊方法,进行相应的控制工作。模糊控制具有简单化、随机性、易操作等优势,将其应用到电力系统中,能够在一定程度上降低自动化的难度,通过简单易懂的模型实现电力系统自动化的功能,并能强化自动化的运行与控制。同时,基于模糊控制的简单模型,一些相关的监理模型也变得简单明了,充分发挥出模糊控制方法的优越性。
模糊理论在电力系统自动化控制中,具有一定的应用价值和实用价值。模糊理论是对已生成的控制规则、相关数据、模糊量进行推导,通过一系列的计算方法,获得最终的输出结果。输出结果通常包括模糊推理、模糊判决、模糊化几部分。在电力系统中应用这种智能技术,能够智能处理一些电力系统方面的问题,从而为人们生产生活提供便利:(1)通过该种智能技术处理电热器、电风扇等家用电器带来的噪声,以改善人们周围的环境;(2)模糊智能技术能够有效处理一些不确定、不精确的问题,使其变得确定、精确;(3)该智能技术能够快速获取并表达所获的知识,即可模拟专家的经验,利用与人的表达方式进行有效表达,从而实现知识的传递和共享;(4)当电力系统的网络拓扑图、环境变量发生改变,该种智能技术的应用能够及时做出反应,并给出正确的解决方法[2]。
随着神经网络控制的研究不断推进,神经网络控制在模型结构、学习等方面得到了应用,且取得了一定的成效。神经网络的结构是在特定方式下,由简单的、大量的神经元连接到一起的。现阶段,人们对神经网络控制方面关注较多的是非线性部分、鲁棒能力等。在该技术的大量实践应用案例表明,该技术为数据传输提供了依据的网络资源载体。在电力系统中,常会用到神经网络结构及其训练算法,并发挥了一定的作用,即使得电力系统的元件能够进行有效互动,使得电力系统的运行速度加快,优势和效果明显。在实际的电力系统应用中,可通过BP 神经网络来进行电力系统短期负荷的预测;可将人工神经网络与元件关联分析进行结合,对电力系统的故障进行检查诊断,并能取得良好的效果。
专家系统是具有丰富经验、较大规则、专门知识的一个程序系统。在运行专家系统时,会有相关领域的专家对故障或者问题进行分析和判断,从而帮助用户找到解决的方法,以实现故障的解除或者问题解决。具体来说,操作专家系统,针对问题或者故障,将由相关领域专家利用专业知识和相关经验对问题或者故障进行推理和判断,并给出专家式的模拟决策过程,从而让问题或者更加清晰化、明显化,简化问题解决的烦琐过程,实现问题解决的科学性、规范性和快速性。就专家系统来说,其适用范围较广,效果明显,在电力系统自动化中发挥了重要的作用,在一定程度上保障了电力系统的持久稳定运行。但该种系统控制还存在一些缺陷,比如,分析组织能力不强、创造性差、验证能力差、应付能力弱等,因此,该技术还需不断完善,从而真正提升专家的控制系统。
在现代控制化理论中,最优控制是其一个重点内容,且实际应用中发挥着重要作用。与其他智能技术相比,线性最优控制技术较为成熟,因此,该技术应用最多,充分体现了其应用价值。在电力系统中,线性最优控制技术的应用只能对局部线性系统进行有效控制,对于非线性系统的控制效果还未达到预期目的,究其原因,是因为线性最优化控制的设计与制造是基于电力系统局部线性模型的,并非全部系统。
综合智能控制主要包含2 层含义:(1)现代控制方法与智能控制的结合,如自适应或自组织模糊控制、模糊变结构控制等;(2)各种智能控制方法的交叉组合。面对复杂、庞大的电力系统,综合智能控制系统的应用还未发挥其真正的作用,因此,对于综合智能系统在电力系统自动化中的应用还需继续研究。另外,在综合智能系统中,模糊逻辑与人工神经网络的服务功能角度不同:模糊逻辑的服务功能主要体现在较高层次的计算推理,即处理非统计性的不确定性问题;人工神经网络的服务功能主要体现在较低层次的计算推理。可见,模糊逻辑与人工神经网络这2 种技术存在一定的互补作用,在实际的电力系统应用中,可根据实际情况,有效结合2 种技术,从而发挥最大作用。
智能化技术的普及和应用,提高了人们的工作效率,给企业带来了效益;在生活方面给人们提供了便利。在电力系统自动化中,智能化技术的应用能够实现数据的准确判断、科学分析、有效控制,从而改善电力系统自动化的运行环境,使得电力运营速度大大提升,在一定程度上降低了电力的损耗,节约了电力系统自动化运营的成本,有利于电力事业的长久发展。
总之,智能化是未来发展的主要趋势,智能化技术将逐渐走向各个领域,并促进各行业的发展。在未来的日子里,智能化技术还会不断完善和发展,从而在电力系统自动化中发挥更重要的作用。
综上所述,智能化技术是当前一项重要的技术,该技术的应用能够简化流程、提高效率,促进应用领域的发展。现阶段,在电力系统自动化中主要应用的智能化技术有模糊控制、神经网络控制、专家系统控制、线性最优控制等,这些技术在一定程度上提升了自动化控制功能,但部分技术还存在着缺陷,有待进一步研究和完善,以期发挥更大的效能。