吴昊
摘 要:随着我国国民经济不断发展和人民生活的迅速提高。业主及建筑师的创新艺术使得钢筋混凝土高层建筑发展被广泛应用。高层建筑结构设计给工程设计人员提出了更高的要求,本文就结构设计中应注意的几方面问题进行探讨。
关键词:高层建筑;结构设计
1高层建筑结构受力方面
对于一个建筑物的最初的方案设计,建筑师考虑更多的是它的空问组成特点,而不是详细地确定它的具体结构。
建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的,由于建筑物是由一些大而重的构件所组成,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布作出总体设想。
对于低层、多层和高层建筑,竖向和水平向结构体系的设计基本原理都是相同的,但是,随着高度的不断增加。竖向结构体系成为设计的控制因素,其原因有两个:其一,较大的垂直荷载要求有较大的柱、墙或者井筒;其二,侧向力所产生的倾覆力矩和剪切变形要大得多。
与竖向荷载相比,侧向荷载对建筑物的效应不是线性增加的,而随建筑高度的增高迅速增大。例如,在所有条件相同时,在风荷载作用下,建筑物基底的倾覆力矩近似与建筑物高度的平方成正比,而其顶部的侧向位移与高度的四次方成正比,地震的作用效应更加明显。在高层建筑中,问题不仅仅是抗剪,而更重要的是整体抗弯和抵抗变形,可见,高层建筑的结构受力性能与低层建筑有很大的差异。
2结构选型阶段
对于高层结构而言,在工程设计的结构选型阶段,结构工程师应该注意以下几点:
2.1结构的规则性问题。
新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件。
2.2结构的超高问题。
在抗震规范与高规中。对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为a级高度的建筑外,增加了b级高度的建筑,因此。必须对结构的该项控制因素严格注意,一旦结构为b级高度建筑甚或超过了b级高度,其设计方法和处理措施将有较大的变化。
在实际工程设计中,出现过由于结构类型的变更而忽略该问题。导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。
2.3嵌固端的设置问题。由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面。
2.4短肢剪力墙的设置问题。在新规范中,对墙肢截面高厚比为5-8的墙定义为短肢剪力墙。且根据实验资料和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。
3地基与基础设计方面
地基与基础设计一直是结构工程师比较重视的方面,不仅仅由于该阶段设计过程的好与坏将直接影响后期设计工作的进行,同时,也是因为地基基础也是整个工程造价的决定性因素,因此,在这一阶段,所出现的问题也有可能更加严重甚至造成无法估量的损失。
在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广,地质条件相当复杂,作为国家标准,仅仅一本《地基基础设计规范》无法对全国各地的地基基础都进行详细的描述和规定,因此,作为建立在国家标准之下的地方标准。
地方性的“地基基础设计规范”能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确,所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。
4结构计算与分析方面
在结构计算与分析阶段,如何准确,高效地对工程进行内力分析并按照规范要求进行设计和处理,是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进,因此,结构工程师也应该相当地对这一阶段比较常见的问题有一个清晰的认识。
4.1结构整体计算的软件选择。目前比较通用的计算软件有:satwe、tat、tbsa或etabs、sap等,但是,由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果有或大或小的不同。所以,在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件,并从不同软件相差较大的计算结果中,判断哪个是合理的、哪个是可以作为参考的,哪个又是意义不大的,這将是结构工程师在设计工作中首要的工作。否则,如果选择了不合适的计算软件,不但会浪费大量的时间和精力,而且有可能使结构有不安全的隐患存在。
4.2是否需要地震力放大,考虑建筑隔墙等对自振周期的影响。
该部分内容实际上在新老规范中都有提及,只是,在新规范中根据大量工程的实测周期明确提出了各种结构体系下高层建筑结构计算自振周期折减系数。
4.3振型数目是否足够。
在新规范中增加一个振型参与系数的概念,并明确提出了该参数的限值。由于在旧规范设计中,并未提出振型参与系数的概念,或即使有该概念,该参数的限值也未必一定符合新规范的要求,因此,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要调整振型数目的取值。
4.4多塔之间各地震周期的互相干扰,是否需要分开计算。一段时间以来,大底盘,多塔楼的高层建筑类型大量涌现,而在计算分析该类型高层建筑时,是将结构作为一个整体并按多塔类型进行计算,还是将结构人为地分开进行计算,是结构工程师必须注意的问题。如果多塔间刚度相差较大,就有可能出现即使振型参与系数满足要求,但是对某一座塔楼的地震力计算误差仍然有可能较大,从而便结构出现不安全的隐患。
4.5非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容,尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大。因此,必须严格按照新规范中增加的非结构构件的计算处理措施进行设计。
结束语
总之,钢筋混凝土高层结构设计是一个长期、复杂甚至循环往复的过程,任何在这过程中的遗漏或错误都有可能使整个设计过程变得更加复杂或使设计结果存在不安全因素。以上也只是笔者在设计过程中对问题一些浅薄的认识。
参考文献:
[1]肖峻,高层建筑结构分析与设计[j],中化建设,2008,(12)
[2]范小平,高层建筑结构概念设计中相关的几个问题应用分析[j]福建建材,2008.