小议中职数学解题中的人文精神渗透

2020-03-02 09:09朱正兵
广东教育 2020年2期
关键词:次品正品人文精神

朱正兵

文/中山市中等专业学校

新课改明确指出,数学知识体系属于人类的一种文化传承,数学教育应该充分体现出人文精神。人文精神的核心是“以人为本”,表现为对人的尊严、价值、命运的维护和对理想人格的塑造。可见,数学与人文并不是对立的,数学教育应该是关注学生自身发展的人文教育。《数学课程标准》修订组组长史宁中教授认为:“数学教育的终极目标是会用数学的眼光观察现实世界;会用数学的思维思考现实世界;会用数学的语言表达现实世界。”因此,作为数学教育工作者,在数学教学中可以借“题”发挥,有意识地加强数学思想方法的人文渗透,提升学生的人文素养。那么,数学思维中蕴含着怎样的人文之美,闪烁着哪些智慧之光呢?怎样让中职数学解题思维在学生今后的生活和工作中发挥作用呢?

一、整体思维方法

所谓整体思维,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法。从整体上去认识问题、思考问题,常常能化繁为简、化难为易,同时又能培养学生思维的灵活性、敏捷性。整体思维的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等。在中职数学中的数与式、方程与不等式、函数与图像、几何与图形等方面,整体思维都有很好的应用。如:

依题意知x-1>0,故可用均值定理求最值.

解:∵x>1,∴x-1>0

说明:通过将x-1作为整体,就简化了计算,解答直接简便。

《田忌赛马》的历史故事充分体现了整体思维的妙用。齐国大将田忌和齐威王赛马。上、中、下三等马匹对决,当从整体布局,调换了比赛顺序,田忌终反败为胜,以两胜一败的成绩赢得比赛,体现了整体思维的最优化选择。

整体思维从整体原则出发,强调事物的相互联系和整体功能。在中国文化中,天人合一其实就是一种整体思维,人与自然是一个整体,人类的发展不能对大自然无限制开发。习近平总书记提出构建人类命运共同体的理念,高瞻远瞩,阐明了人与自然永续发展与奋斗航向。探寻整体思维方法的人文精神,了解天人合一的文化内涵,有利于培养学生的全局观、大局观,提高学生思想境界。

二、转化思维方法

著名数学家玻利亚说:“解决数学问题的关键在于转化。”所谓转化,是指在解决数学问题时通过变换,将问题转化形式,进而达到解决的一种方法。具体表现为化繁为简、化难为易、化高次为低次、化多元为一元、化未知为已知……转化思维是数学解题中具有代表性、普遍性的思想方法,是数学解题的灵魂。比如解题时,通常都是将不等式转化为函数、方程,正面转化为反面,一般转化为特殊,变量转化为常量,通过数形结合将几何问题转化为代数问题等等。

例2:一个纸箱中有10件机器人模型,其中3件次品,7件正品,从中任意摸出3件,试求:取到的3件至少有1件次品概率。

分析:从正面考虑需要分三种情况讨论,分别包含:①1件次品2件正品;②2件次品1件正品;③3件次品0件正品。计算量较大,容易出错。但从反面思考,没有次品,也就是3件都是正品,这种思路较为简洁。

在数学解题中时常会遇到像这样的有关于至多、至少的问题,如果从正面入手,求解难度大,甚至无从下手。运用逆向思维,如果从反面思考,实现正反相互转化,便容易解决了。

中国人的传统思想中,认为任何事物既互相对立又相互依存,可以相互转化。《司马光砸缸》的故事中,危急时刻,司马光急中生智,砸缸救出了落水儿童。《曹冲称象》的故事中,九岁的曹冲把大象的重量转化为石头的重量,称出石头的重量,就得出了大象的体重。转化思维,常常成为化险为夷,突破现实困境的关键。

在日常生活中,转化思维,常能化负为正,转逆为顺。美国总统罗斯福家中不幸被盗,朋友来信安慰他,他却这样回信:“我应该感谢那位小偷。第一,贼偷去的只是我的东西,而没有伤害我;第二,贼只偷去我部分的东西,而不是全部;第三,最值得庆幸的是,做贼的是他,而不是我……”

事实上,数学题中的目标与条件,已知与未知,常值与变量,既对立,又统一。运用转化思维,促使事物向良性方向发展,问题便迎刃而解。生活中的难题或困境,就像一道道数学题,在教学中渗透转化思维的人文精神,就能发挥数学教育的人文关怀作用,实现“参天地之化育”的教育功能。

三、类比思维方法

类比思维是根据两个具有相同或相似特征的事物间的对比,从某一事物的某些已知特征,推测出另一事物的相应特征的思维活动。古语云:“授人以鱼,只供一饭。授人以渔,则终身受用无穷。”全日制中学教学大纲指出,要重视能力的培养,使学生逐步学会分析、综合、归纳、类比等重要的思想方法。在中职数学教学中恰当地应用类比方法,不仅能突出问题的本质,提高教学质量,而且有助于培养学生的创造能力。

分析:原函数可转换为

由两点间的距离公式得几何意义为点P(x,0)到点A(1,2)与点B(2,3)距离之和的最小值,根据几何定理,找出点A关于x轴对称点A′(1,-2),容易看出|PA|+|PB|的最小值为|A′B|,

所以ymin=|A′B|

同类事物的类比能使学生从感性出发,认识事物的数学特征,形成积极探索的心理状态,达到寻根探源的目的。运用类比思维,我们会发现“三十年河东,三十年河西”“由俭入奢易,由奢入俭难”“塞翁失马,焉知非福”,这些谚语映射出的人生道理,恰与数学中的抛物线吻合。数学抛物线仿佛一条跌宕起伏的生命线,教会学生读懂它,有深远的意义。《易经》的思维方式是类比,如乾为天,坤为地等等,它用细小具体的事物类比说明重大普遍的道理,表现出宇宙万物的无穷变化。“跨国公司是大象,华为是老鼠,华为打不过大象,但是要有狼的精神。”任正非运用类比,形象地勾勒出了华为的远景;乔布斯描述苹果电脑是“思想的自行车”。类比思维能培养学生洞察力,而洞察力是创造的源泉。

意大利科学家伽利略说:“数学是上帝书写宇宙的文字。”数学教学就其教学内容来说,不管是概念教学、解题教学,其数学思想离不开人自身。数学教育的任务,不仅是知识的传授,而且是人文的熏陶,素养的提升。把人文教育、人格培养,渗透于中职数学教学中,这是时代的需要,是促进学生全面素质发展的必需。让我们通过数学净化学生心灵,关注学生生命成长。

猜你喜欢
次品正品人文精神
怎 样 找 次 品
“找次品”方法背后的道理
找次品
冬虫夏草鉴别和临床应用研究进展
浸润“正品”课程文化培育学生自信人格
人文精神在科技期刊编辑出版中的体现及构建
巧妙找次品
试论医学人文精神的构建
循证医学的人文精神
寻找历史的缝隙——关于“人文精神讨论”的述评与思考