孙莹,张兵,李岭,黄小洁,侯力丹,刘丹,李启红,李俊平,王乐元,李慧姣,杨承槐
表达H9亚型禽流感病毒HA基因重组鸭肠炎病毒的构建
孙莹,张兵,李岭,黄小洁,侯力丹,刘丹,李启红,李俊平,王乐元,李慧姣,杨承槐
(中国兽医药品监察所,北京 100081)
H9亚型禽流感病毒(AIV)存在宿主范围扩大、毒力增强的趋势,并为其他亚型AIV重排提供基因,给养禽业和公共卫生造成极大威胁。水禽不仅是流感病毒的宿主,更是其天然储存库,在禽流感病毒的传播和变异中发挥着重要作用。因此有效控制水禽感染对养禽业健康发展、公共卫生安全具有重要意义。鸭肠炎病毒(DEV)属于疱疹病毒,能感染鸭、鹅等雁形目禽类,可引起产蛋下降及高死亡率。DEV基因组大,免疫原性好,具有开发成活疫苗载体的潜力。【】构建缺失gE基因、表达H9亚型AIV HA基因的重组病毒rDEV-△gE-HA,探讨重组病毒rDEV-△gE-HA作为防治DEV-AIV的二联重组活载体疫苗的可行性。以H9N2亚型禽流感病毒HA基因作为靶基因,构建含有HA基因表达盒的转移载体pT-gE-HA,将其与携带绿色荧光蛋白标记的重组rDEV-△gE-GFP共转染CEF细胞后,进行蚀斑筛选、纯化表达HA基因的重组病毒rDEV-△gE-HA;利用PCR、基因测序鉴定重组病毒;在CEF中连续传代重组病毒20次,测定外源基因传代稳定性。以103TCID50免疫易感鸭,分析重组病毒rDEV-ΔgE-HA对致死性DEV强毒攻毒保护效果;将不同剂量(103-106TCID50)rDEV-△gE-HA免疫鸭,免疫后14、21、28 d分别采集血清,测定H9血凝抑制(HI)抗体,并在免疫后28 d,以108EID50的剂量静脉注射H9N2 AIV(A/duck/GD/08),攻毒后2 d,采集喉拭子,进行病毒分离试验。将构建的转移质粒载体pT-gE-HA与rDEV-△gE-GFP共转染CEF细胞,经过3轮蚀斑筛选,获得纯化的重组病毒rDEV-△gE-HA。PCR鉴定及基因测序结果显示,HA基因成功地插入到DEV基因组中,替换了绿色荧光蛋白。重组病毒在CEF中至少能稳定传代20代。重组病毒rDEV-ΔgE-HA以103TCID50免疫易感鸭,能抵抗致死性DEV强毒攻击。重组病毒rDEV-ΔgE-HA免疫易感鸭后14 d,各剂量免疫组均能检测到H9 HI抗体效价;免疫后21日,各组抗体效价水平略有上升,103TCID50剂量免疫组HI抗体效价达到1:24,而104-106TCID50剂量免疫组HI抗体效价在1:22.4-1:23。免疫鸭后28 d,用H9N2 AIV进行攻毒,103、104、106TCID50免疫组均未从喉拭子分离到病毒H9N2,说明能完全保护,阻止喉头排毒,而105TCID50免疫组保护率为80%(4/5),1/5病毒分离阳性。成功构建了稳定表达H9亚型AIV HA基因的重组DEV,该重组病毒保留了亲本毒的免疫原性,能抵抗致死性DEV强毒的攻击;免疫鸭后能诱导产生AIV HI抗体,尽管HI抗体滴度不高,但至少80%免疫鸭能阻止排毒。该研究为研制DEV-H9亚型AIV二联重组活载体疫苗奠定了基础。
鸭肠炎病毒;H9亚型禽流感病毒;HA;重组病毒
【研究意义】禽流感是由A型流感病毒(avian influenza virus,AIV)引起的禽类的急性、烈性、接触性传染病,分为高致病性禽流感和低致病性禽流感[1](http://www.oie.int)。H9亚型禽流感可导致家禽发病、混合感染、免疫抑制[2-3],还为H5N1、H7N9、H10N8和H5N6等亚型禽流感重排提供内部基因[4-8],对公共卫生造成威胁[9]。水禽作为流感病毒最复杂的生态系统,在H9亚型禽流感病毒传播和变异中发挥着重要作用[10-12]。因此,水禽免疫是H9亚型禽流感防制的关键环节。目前H9N2禽流感油乳剂灭活疫苗对于水禽存在着抗体水平不高、免疫效果不确实等缺点,因此急需一种高效、安全、适用于水禽的新型疫苗。鸭病毒性肠炎,也称为鸭瘟,是由鸭肠炎病毒(duck enteritis virus,DEV)引起的鸭、鹅等多种雁形目禽类感染的一种急性、热性、接触性传染病[13]。鸭病毒性肠炎引起产蛋下降及高死亡率,造成巨大的经济失,是目前对水禽养殖业危害最严重的疫病之一[13]。本研究探索以DEV为载体表达H9亚型AIV抗原的新型活载体疫苗的可行性,可以同时防治鸭、鹅等水禽的DEV和AIV的感染,具有很好的发展前景。【前人研究进展】DEV属于疱疹病毒科、甲型疱疹病毒亚科、马立克病毒属、鸭疱疹病毒1型[14](http://www. ictvonline.org)。DEV基因组大,158—162k[15-20],免疫后3日即可产生保护力,安全性好,只感染雁形目禽类,对其他家畜和人不致病,可用作基因工程疫苗活载体。近年来,以DEV为载体表达外源基因进行了探索研究,如表达H5亚型AIV HA基因[21-24]、H9亚型HA基因[25]、1和3型鸭肝炎病毒VP1蛋白[26]、小鹅瘟病毒VP2蛋白[27-28]、鸭坦布苏病毒E和PrM蛋白[29-30]、鸡传染性支气管炎病毒S、N、S1蛋白[31]。动物试验结果令人鼓舞,表达H5N1亚型AIV HA基因的重组DEV,以106PFU免疫鸭一次,3 d后即可抵抗致死性H5N1病毒,另有研究报道,以105PFU免疫鸭一次,即可抵抗致死性H5N1病毒[24]。表达H9亚型AIV HA的重组病毒DEV,以103EID50免疫鸭后能产生高水平的HI抗体(1:256),并能完全阻止H9N2亚型AIV排毒[25]。同时表达1、3型鸭肝炎病毒VP1蛋白的重组DEV,免疫鸭2周后即可检测到中和抗体,4周后中和抗体达峰值1:32;免疫后3 d即可抵抗1、3型鸭肝炎病毒的攻击[26]。这些研究结果表明,DEV作为活疫苗载体潜力巨大。【本研究切入点】外源基因的插入位点对其表达影响较大,插入位点不同,抗体水平、免疫效果也明显差异。【拟解决的关键问题】寻找稳定、高效表达外源基因的插入位点,为研制DEV-AIV基因重组活载体疫苗奠定了基础。
本试验于2014年6月至2016年7月在中国兽医药品监察所完成。
1.2.1 毒株和细胞 DEV细胞适应毒、DEV强毒株和H9N2禽流感(A/duck/GD/08)由中国兽医药品监察所保存;SPF鸡胚由北京梅里亚维通实验动物技术有限公司提供,按常规方法制备鸡胚成纤维细胞(CEF)。
1.2.2 试验动物 4周龄易感麻鸭(DEV中和抗体和H9亚型禽流感HI抗体均<1:4)购自北京昌平某鸭场。
1.2.3 质粒和菌株 重组质粒PT-gE-GFP-gpt、表达绿色荧光蛋白的重组病毒rDEV-△gE-GFP-gpt由中国兽医药品监察所病毒制品检测室构建保存;pMD18T载体购自大连TaKaRa公司,DH5α受体菌购自天根生化科技(北京)有限公司。
1.2.4 主要试剂 Ex Taq DNA 聚合酶、限制性内切酶、T4 DNA 连接酶、T4 DNA 聚合酶购自大连TaKaRa公司;胶回收试剂盒等均购自天根生化科技(北京)有限公司;胎牛血清、M199培养液购自Hyclone公司;OPTI-MEM培养液购自Gibco公司;lipofectamine2000购自Invitrogen公司;无内毒素高纯质粒提取试剂盒Endo-free Plasmid Mini Kit II购自Omega公司。
1.2.5 引物试验所用PCR引物见表1,由上海Invitrogen生物公司合成。
表1 目的基因的扩增引物及鉴定引物
1.3.1 重组质粒的构建 构建策略见图1。以H9N2亚型AIV RNA反转录的cDNA为模板扩增HA基因,经I和H I双酶切克隆到质粒pT-gE-GFP- gpt,获得重组质粒pT-gE-HA。
a:DEV基因组示意图,包括UL, IRS, US和TRS区域;b:GFP基因表达盒插入到DEV gE基因内,获得rDEV-△gE-GFP-gpt;c:质粒pT-gE-HA与rDEV-△gE-GFP-gpt进行同源重组,获得重组病毒rDEV-△gE-HA
1.3.2 重组病毒的制备、纯化及鉴定 重组质粒pT-gE-HA与表达绿色荧光蛋白的重组病毒rDEV-△gE-GFP-gpt共转染CEF,筛选、纯化按文献[32]方法进行。用鉴定引物Re-JD-F、Re-JD-R进行PCR扩增,PCR产物送上海Invitrogen生物公司测序。
1.3.3 重组病毒的稳定性 将重组病毒接种CEF(moi=0.01),待80%细胞产生病变后,冻融3次,再接种CEF,如此连续传代20次。用引物Re-JD-F、Re-JD-R进行PCR鉴定外源基因HA是否稳定存在。
1.3.4 动物试验
1.3.4.1 DEV免疫原性 将15只4周龄易感麻鸭分成3组,5只/组,分别肌肉注射103TCID50rDEV-ΔgE- HA、DEV亲本毒或PBS作为对照。每组单独隔离饲养。在免疫后14 d,腿部肌肉注射接种DEV强毒(CVCC AV1221),每只103MLD。观察14 d,每天记录发病死亡情况。
1.3.4.2 H9免疫原性 将30只4周龄易感麻鸭分成6组,5只/组,其中4组分别以103—106TCID50的剂量肌肉注射rDEV-ΔgE-HA,1组肌肉注射103TCID50DEV亲本毒,另1组注射PBS作为对照,1 mL/只,免疫后第2、3、4周分别采集血清,测定H9血凝抑制抗体,免疫后28 d,以108EID50剂量静脉注射H9N2 AIV(A/duck/ GD/08),攻毒后2 d,采集喉拭子,进行病毒分离试验。
转移载体pT-gE-HA与DEV共转染CEF细胞后,经过3代筛选,所有的蚀斑都无绿色荧光,获得纯化的重组病毒rDEV-ΔgE-HA。经测序证实,插入的HA基因大小和位置均正确。
重组病毒经过传代20次,对重组病毒的HA基因进行PCR鉴定,各代次重组病毒的PCR扩增片段大小均为2 500 bp(图2),证实HA基因在重组病毒中稳定存在。
重组病毒rDEV-ΔgE-HA及其亲本毒分别以103TCID50免疫易感鸭,均能抵抗致死性DEV强毒攻击,在14 d观察期内未出现任何临床症状,而对照组鸭攻毒后3 d均表现出精神萎靡、食欲不振等症状并在6 d内死亡。表明HA基因的插入并不影响亲本毒免疫原性,能100%抵抗DEV强毒攻击(图3)。
M:DL15000。数字代表重组病毒的代次
图3 重组病毒对DEV的攻毒保护效果
以不同剂量rDEV-△gE-HA(103—106TCID50)免疫鸭,在免疫后14、21和28 d分别采血,测定HI抗体效价。在免疫后14 d,各组HI抗体效价水平均在1:22左右;免疫后21 d,各组抗体效价水平略有上升,103TCID50剂量免疫组HI抗体效价达到1:24,而104—106TCID50剂量免疫组HI抗体效价在1:22.4—1:23;免疫后28 d,各组HI抗体效价均略有降低,在1:22—1:23(图4)。
图4 重组病毒诱导产生的HI抗体
不同剂量免疫鸭后28 d,用H9N2禽流感病毒(A/duck/GD/08)进行攻毒。103、104、106TCID50免疫组均未从喉拭子分离到病毒H9N2,说明能完全保护,阻止喉头排毒;然而,105TCID50免疫组部分保护率为80%(4/5),1/5病毒分离阳性。
这些数据表明,重组病毒rDEV-△gE-HA能诱导产生HI抗体,对H9N2亚型禽流感病毒具有一定的保护。
在中国,自从1992年首次报道,H9N2亚型AIV存在宿主范围扩大、毒力增强的趋势,对养禽业造成巨大威胁[33];此外,H9N2亚型AIV不仅能直接感染人类,还为其他亚型流感病毒发生重排提供内部基因,对公共健康存在巨大风险[9]。鸭被认为是禽流感病毒的主要自然储存库,因此控制H9N2禽流感病毒在鸭群内的感染与传播对保护其他动物和公共健康具有重要意义。本研究将水禽源H9N2亚型禽流感病毒HA基因插入到鸭肠炎病毒中,成功地构建了表达H9亚型禽流感病毒HA基因的重组鸭肠炎病毒rDEV-ΔgE-HA。
以不同剂量rDEV-△gE-HA(103—106TCID50)免疫鸭后,均能产生HI抗体,但HI抗体滴度较低(1:22—1:24),且HI抗体滴度与免疫剂量无明显相关性。下一步将尝试加强免疫,是否能提高HI抗体滴度。在另一研究中,笔者将相同的HA基因表达盒插入到DEV UL2基因内,获得重组病毒rDEV-△UL2-HA,该重组病毒免疫鸭后14 d,HI抗体滴度为1:24,免疫后28 d,HI抗体滴度上升到1:28,抗体滴度显著高于本研究结果[25]。因此,HA基因的插入位点对HI抗体滴度具有重要影响。在疱疹病毒中,如EHV-1[34]、EHV-4[35]、HSV-1[36]、PRV[37]、BHV-1[38]、FHV-1[39],糖蛋白gE和gI形成异构体,有助于病毒在细胞间扩散,这两个糖蛋白缺失后细胞间扩散的能力减弱。DEV gI/gE基因缺失后,蚀斑明显减小,病毒在细胞间扩散能力减弱[17],这是否与HI抗体滴度较低有关,有待进一步研究。
目前关于应用DEV作为载体表达各种免疫原性基因的报道已有很多,插入外源基因的靶位点不尽相同,免疫原性也有一定差别。将H5N1亚型AIV的HA基因分别插入DEV UL41基因内以及US7与US8基因之间,分别构建出重组病毒rDEV-△UL41-HA以及rDEV-△US78-HA,以106PFU的rDEV-△US78-HA免疫鸭2周后,大部分免疫鸭(5/6)能产生HI抗体,免疫3、4周后,所有免疫鸭均能产生HI抗体,最高滴度可达1﹕64左右,随后HI抗体滴度迅速下降;rDEV-△UL41-HA免疫效果比rDEV-△US78-HA略差[22]。在另一研究中,将鹅源H5N1亚型AIV的HA基因分别插入到gI、gE基因内和US2基因内,2个重组病毒免疫鸭后第7天能检测到DEV抗体,抗体滴度无明显差异,但是比亲本毒低;然而未诱导产生AIV HI抗体,只能通过Western blotting可以检测到HA抗体[23]。将H5N1亚型AIV的HA基因插入到DEV gC基因内构建的重组病毒rDEV-△gC-HA,通过IFA及蛋白免疫印记试验可检测到HA基因在感染细胞内高效表达[21]。将H5N1 AIV 的HA基因插入gB和UL26基因之间,获得的重组病毒免疫1月龄SPF鸭,能够产生HI抗体,最高滴度可达1:64左右[24]。在DEV US7和US8之间插入鸭坦布苏病毒的TE基因和PrM基因或单独插入TE基因,免疫鸭后2周能检测到鸭坦布苏病毒中和抗体,加强免疫后中和抗体升高约8倍,滴度高达1:128[30]。在DEV SORF3与 US2连接区插入鸭坦布苏病毒的E基因,免疫鸭后2周能检测到坦布苏病毒中和抗体,免疫后4周中和抗体滴度达1:32左右[29]。将传染性支气管炎病毒的N、S或S1基因插入DEV US10基因内,免疫后7 d即可产生体液和细胞免疫应答[31]。
在本研究中,成功地将H9亚型AIV HA基因插入到DEV gE基因内,获得了稳定表达HA基因的重组病毒rDEV-ΔgE-HA。该重组病毒保留了亲本毒的免疫原性,能抵抗致死性DEV强毒的攻击;免疫鸭后能诱导产生AIV HI抗体,尽管HI抗体滴度不高,但能部分阻止排毒。
[1] 于康震, 陈化兰. 禽流感. 北京: 中国农业出版社, 2015.
YU K Z, CHEN H L.. Beijing, China Agriculture Press, 2015. (in Chinese)
[2] SUN Y, LIU J. H9N2 influenza virus in China: A cause of concern. P2015, 6 (1): 18-25. doi:10.1007/s13238-014-0111-7
[3] ZHANG P, TANG Y, LIU X, PENG D, LIU W, LIU H, LU S, LIU X. Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in eastern China during a 5 year period (1998-2002).2008, 89 (Pt 12): 3102-3112. doi:10.1099/vir.0.2008/005652-0.
[4] GU M, CHEN H, LI Q, HUANG J, ZHAO M, GU X, JIANG K, WANG X, PENG D, LIU X. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China.2014, 174(3/4): 309-315. doi:10.1016/j.vetmic.2014. 09.029.
[5] GUAN Y, SHORTRIDGE K F, KRAUSS S, CHIN P S, DYRTING K C, ELLIS T M, WEBSTER R G, PEIRIS M. H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China.2000, 74(20): 9372-9380. doi:10.1128/jvi.74.20.9372- 9380.2000.
[6] SHEN Y Y, KE C W, LI Q, YUAN R Y, XIANG D, JIA W X, YU Y D, LIU L, HUANG C, QI W B, SIKKEMA R, WU J, KOOPMANS M, LIAO M. Novel Reassortant Avian Influenza A(H5N6) viruses in humans, Guangdong, China, 2015.2016, 22 (8): 1507-1509. doi:10. 3201/eid2208.160146.
[7] ZHANG Z, LI R, JIANG L, XIONG C, CHEN Y, ZHAO G, JIANG Q. The complexity of human infected AIV H5N6 isolated from China.2016, 16 (1): 600. doi:10.1186/s12879-016- 1932-1.
[8] RAHIMIRAD S, ALIZADEH A, ALIZADEH E, HOSSEINI S M. The avian influenza H9N2 at avian-human interface: A possible risk for the future pandemics.2016, 21: 51. doi:10. 4103/1735-1995.187253.
[9] GU M, XU L, WANG X, LIU X. Current situation of H9N2 subtype avian influenza in China.2017, 48(1): 49. doi:10.1186/ s13567-017-0453-2.
[10] ROCHE B, LEBARBENCHON C, GAUTHIER-CLERC M, CHANG C M, THOMAS F, RENAUD F, VAN DER WERF S, GUEGAN J F. Water-borne transmission drives avian influenza dynamics in wild birds: the case of the 2005-2006 epidemics in the Camargue area.2009, 9 (5): 800-805. doi:10.1016/j. meegid.2009.04.009.
[11] BARBER M R, ALDRIDGE J R, JR., WEBSTER R G, MAGOR K E. Association of RIG-I with innate immunity of ducks to influenza.2010, 107(13): 5913-5918. doi:10.1073/pnas. 1001755107.
[12] MARKWELL D D, SHORTRIDGE K F. Possible waterborne transmission and maintenance of influenza viruses in domestic ducks.1982, 43 (1): 110-115.
[13] SANDHU T S, METWALLY S A. Duck virus enteritis(Duck Plague) //SAIF Y M.Singapore; Blackwell Publishing. 2008: 384-393.
[14] KING A M Q, ADAMS M J, CARSTENS E B, LEFKOWITZ E J. Virus taxonomy: Classification and nomenclature of viruses//. San Diego,CA: Elsevier Academic Press, 2012.
[15] WANG J, HOPER D, BEER M, OSTERRIEDER N. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains.2011, 160 (1-2): 316-325. doi:10.1016/ j.virusres.2011.07.004.
[16] YANG C, LI Q, LI J, ZHANG G, LI H, XIA Y, YANG H, YU K. Comparative genomic sequence analysis between a standard challenge strain and a vaccine strain of duck enteritis virus in China.2014, 48 (2): 296-303. doi:10.1007/s11262-013-1009-9.
[17] YANG C, LI J, LI Q, LI L, SUN M, LI H, XIA Y, YANG H, YU K. Biological properties of a duck enteritis virus attenuated via serial passaging in chick embryo fibroblasts.2015, 160 (1): 267-274. doi:10.1007/s00705-014-2275-0.
[18] YANG C, LI J, LI Q, LI H, XIA Y, GUO X, YU K, YANG H. Complete genome sequence of an attenuated duck enteritis virus obtained by in vitro serial passage.2013, 1(5): 10.1128/genomeA.00685-13.
[19] LI Y, HUANG B, MA X, WU J, LI F, AI W, SONG M, YANG H. Molecular characterization of the genome of duck enteritis virus.2009, 391(2): 151-161. doi:10.1016/j.virol.2009.06.018.
[20] WU Y, CHENG A, WANG M, YANG Q, ZHU D, JIA R, CHEN S, ZHOU Y, WANG X, CHEN X. Complete genomic sequence of Chinese virulent duck enteritis virus.2012, 86 (10): 5965. doi:10.1128/ JVI.00529-12.
[21] WANG J, OSTERRIEDER N. Generation of an infectious clone of duck enteritis virus (DEV) and of a vectored DEV expressing hemagglutinin of H5N1 avian influenza virus.2011, 159 (1): 23-31. doi:10.1016 /j.virusres.2011.04.013.
[22] LIU J, CHEN P, JIANG Y, WU L, ZENG X, TIAN G, GE J, KAWAOKA Y, BU Z, CHEN H. A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks.2011, 85 (21): 10989-10998. doi:10.1128/JVI. 05420-11.
[23] LIU X, WEI S, LIU Y, FU P, GAO M, MU X, LIU H, XING M, MA B, WANG J. Recombinant duck enteritis virus expressing the HA gene from goose H5 subtype avian influenza virus.2013, 31(50): 5953-5959. doi:10.1016/j.vaccine.2013.10.035.
[24] ZOU Z, HU Y, LIU Z, ZHONG W, CAO H, CHEN H, JIN M. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection.2015, 46 (1): 42. doi:10.1186/s13567-015-0174-3.
[25] SUN Y, YANG C, LI J, LI L, CAO M, LI Q, LI H. Construction of a recombinant duck enteritis cirus vaccine expressing hemagglutinin of H9N2 avian influenza virus and evaluation of its efficacy in ducks., 2017, 162 (1): 9. doi:DOIhttps://doi.org/10.1007/ s00705-016-3077-3.
[26] GE J, DENG G, WEN Z, TIAN G, WANG Y, SHI J, WANG X, LI Y, HU S, JIANG Y, YANG C, YU K, BU Z, CHEN H. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses., 2007, 81(1): 150-158. doi:10.1128/jvi.01514-06.
[27] QIAO C, YU K, JIANG Y, LI C, TIAN G, WANG X, CHEN H. Development of a recombinant fowlpox virus vector-based vaccine of H5N1 subtype avian influenza.2006, 124: 127-132.
[28] 陈柳, 余斌, 倪征, 华炯钢, 叶伟成, 云涛, 张存. 表达小鹅瘟病毒VP2蛋白重组鸭瘟病毒的构建及其生物学特性. 中国农业科学, 2016, 49(14): 2813-2821.
CHEN L, YU B, NI Z, HUA J G, YE W C, YUN T, ZHANG C. Construction and characterization of a recombinant duck enteritis virus expressing VP2 gene of goose parvovirus., 2016, 49(14):2813-2821.(in Chinese)
[29] ZOU Z, LIU Z, JIN M. Efficient strategy to generate a vectored duck enteritis virus delivering envelope of duck tembusu virus.2014, 6 (6): 2428-2443. doi:10.3390/v6062428.
[30] CHEN P, LIU J, JIANG Y, ZHAO Y, LI Q, WU L, HE X, CHEN H. The vaccine efficacy of recombinant duck enteritis virus expressing secreted E with or without PrM proteins of duck tembusu virus.2014, 32 (41): 5271-5277. doi:10.1016/j.vaccine. 2014.07.082.
[31] LI H, WANG Y, HAN Z, WANG Y, LIANG S, JIANG L, HU Y, KONG X, LIU S. Recombinant duck enteritis viruses expressing major structural proteins of the infectious bronchitis virus provide protection against infectious bronchitis in chickens.2016, 130: 19-26. doi:10.1016/j.antiviral.2016.03. 003.
[32] 孙莹, 李俊平, 黄小洁, 李岭, 曹明慧, 李启红, 李慧姣, 杨承槐. 表达绿色荧光蛋白重组鸭肠炎病毒构建. 中国农业科学, 2016, 49(14): 2805-2812.
SUN Y, LI J P, HUANG X J, LI L, CAO M H, LI Q H, LI H J, YANG C H. Construction and characterization of recombinant duck enteritis virus expressing the green fluorescent protein.2016, 49(14):2805-2812.(in Chinese)
[33] BUBLOT M, PRITCHARD N, LE GROS F X, GOUTEBROZE S. Use of a vectored vaccine against infectious bursal disease of chickens in the face of high-titred maternally derived antibody.2007, 137(Suppl 1): S81-84. doi:10.1016/j. jcpa.2007.04.017.
[34] MATSUMURA T, KONDO T, SUGITA S, DAMIANI A M, O'CALLAGHAN D J, IMAGAWA H. An equine herpesvirus type 1 recombinant with a deletion in the gE and gI genes is avirulent in young horses.1998, 242 (1): 68-79. doi:10.1006/viro.1997. 8984.
[35] DAMIANI A M, MATSUMURA T, YOKOYAMA N, MIKAMI T, TAKAHASHI E. A deletion in the gI and gE genes of equine herpesvirus type 4 reduces viral virulence in the natural host and affects virus transmission during cell-to-cell spread.2000, 67(2): 189-202. doi:10.1016/ S0168-1702(00)00146-5.
[36] JOHNSON D C, WEBB M, WISNER T W, BRUNETTI C. Herpes simplex virus gE/gI sorts nascent virions to epithelial cell junctions, promoting virus spread.2001, 75(2): 821-833. doi:10.1128/ jvi.75.2.821-833.2001.
[37] JACOBS L, RZIHA H J, KIMMAN T G, GIELKENS A L, VAN OIRSCHOT J T. Deleting valine-125 and cysteine-126 in glycoprotein gI of pseudorabies virus strain NIA-3 decreases plaque size and reduces virulence in mice.1993, 131(3/4): 251-264.
[38] TRAPP S, OSTERRIEDER N, KEIL G M, BEER M. Mutagenesis of a bovine herpesvirus type 1 genome cloned as an infectious bacterial artificial chromosome: analysis of glycoprotein E and G double deletion mutants.2003, 84 (Pt 2): 301-306.
[39] SUSSMAN M D, MAES R K, KRUGER J M, SPATZ S J, VENTA P J. A feline herpesvirus-1 recombinant with a deletion in the genes for glycoproteins gI and gE is effective as a vaccine for feline rhinotracheitis.1995, 214 (1): 12-20. doi:10.1006/viro.1995.9959.
Construction of a Recombinant Duck Enteritis Virus Expressing Hemagglutinin of H9N2 Avian Influenza Virus
Sun Ying, Zhang Bing, Li Ling, Huang XiaoJie, Hou LiDan, Liu Dan, Li QiHong, LI JunPing, Wang LeYuan, LI HuiJiao, Yang ChengHuai
(China Institute of Veterinary Drug Control, Beijing 100081)
【】The H9N2 avian influenza virus (AIV) pathogenicity and transmissibility have recently showed an increasing trend. Moreover, it donates partial or even whole cassette of internal genes to generate novel reassortants, which is serious threat to poultry industry and public health. Waterfowls are considered as the natural host and reservoirs of AIVs and play an important role in the spread and mutation of AIV. Therefore, successful control of the spread of H9N2 in waterfowls contributes significantly to poultry industry and public health. Duck enteritis virus (DEV) taxonomically belongs to familyand infects ducks, geese, and swans, which results in high mortality and decreased egg production in domestic and wild waterfowl. DEV may be a promising candidate viral vector for aquatic poultry vaccination because it has a large genome and good immunogenicity.】In this study, we constructed a recombinant DEV expressing the hemagglutinin (HA) gene of a H9N2 virus that was inserted into the deleted viral gE gene, and then its characterization to explore the feasibility of the recombinant DEV as a live vectored vaccine was studied.【】 The HA gene of H9N2 was cloned to construct the transfer vector pT-gE-HA. Plasmid pT-gE-HA and rDEV-△gE-GFP were co-transfected into CEF cells. After plaque-purification, we obtained a pure recombinant virus which expressed H9N2 AIV HA protein, and named as rDEV-△gE-HA; PCR and sequencing assay were used to identify the recombinant virus. The recombinant virus was passaged in primary CEF 20 times to evaluate the genetic stability of the foreign gene in the recombinant virus. Ducks were inoculated with 103EID50rDEV-△gE-HA, then challenged with lethal DEV. Ducks were vaccinated intramuscularly with 103–106TCID50of rDEV-△gE-HA. At 14, 21, and 28 days post-vaccination (d.p.v.), sera were obtained from all ducks to monitor HI antibody against H9N2 AIV. At 28 d.p.v. all ducks were challenged with 108EID50H9N2 (A/duck/GD/08) by intravenous injection. Oropharyngeal swabs were collected from H9N2 virus challenged ducks to detect viral shedding.【】The recombinant expression vector pT-gE-HA was constructed and transfected with rDEV-△gE-GFP in chicken embryo fibroblasts (CEF). After 3 rounds of plaque-purification, the purified rDEV-△gE-HA was obtained. The results of the PCR and sequencing indicated that the HA expression cassette had already successfully been inserted into the DEV.The HA gene were stably maintained after the recombinant was passaged 20 times in CEF. Ducks inoculated with 103TCID50of rDEV-△gE-HA were protected against lethal DEV. HI antibody was detected in all vaccinated ducks at 14 d.p.v. and slightly increased at 21 d.p.v.. Challenge with H9N2 at 28 d.p.v., ducks inoculated with 103, 104and 106TCID50were completely protected from challenge, as evidenced by the finding that no virus was recovered from collected oropharyngeal swabs, while 80% ducks (4/5) inoculated with 105TCID50were protected.【】In this research, we successfully constructed a stable recombinant DEV expressing the HA of H9N2 AIV. The recombinant DEV remained the protective efficacy of the parental virus against lethal DEV parental virus. Moreover, it could induce HI antibody in ducks and protect no less 80% ducks against H9N2 AIV challenge, although the titer of HI antibody was not too high. This study laid a foundation for developing bivalent vaccine controlling DEV and AIV infection.
duck enteritis virus; H9 subtype AIV; HA; recombinant virus
10.3864/j.issn.0578-1752.2019.23.020
2019-04-23;
2019-07-22
国家重点研发计划(2017YFD0500800)、北京市自然科学基金项目(6162025)
孙莹,E-mail:sunyinggoodluck@163.com。张兵,E-mail:zhangbing06@163.com。孙莹和张兵为同等贡献作者。
杨承槐,Tel:010-61255386;E-mail:ychenghuai@163.com
(责任编辑 林鉴非)