风力发电并网技术及电能质量控制措施

2019-12-01 11:24赵剑波
电子技术与软件工程 2019年16期
关键词:风力电能谐波

文/赵剑波

随着社会经济的不断发展,电力的应用也越来越广泛,人们在日常生活中越来越离不开电力。我国的发电方法非常多,主要包括火力发电,水力发电以及风力发电。因为风的可利用性非常强,而且我国风力资源非常丰富,因此我国主要应用的发电技术还是风力发电。为了更充分的利用风力能源,我国在风力发电技术方面发展的非常迅速。风力发电技术的进步推动了风力发电的广泛应用,也促进了我国风力发电厂的建设。但是风力发电的供电网络中心跟其他发电方式相比稳定性较弱,抵抗外界干扰的能力也比较差,不能受到过于大的冲击力。这就使得风力发电系统在发电过程中经常出现各种各样的问题,因此如何解决风力发电容易出现故障的技术性问题和提高风力发电电能质量问题便显得越来越重要。本文便是从解决风力发电稳定性较弱,抵抗能力较差的问题出发,不断的提高风力发电的质量,为风力发电在我国的更广泛的应用做保障。

1 风力发电并网技术

风力发电并网技术是指发电机输出的电压在幅值,频率以及向位上和电网系统的电压是一致的。风力发电并网是完成风力发电到电能供应的必要过程,是实现电能输出的必要环节。并网技术的关键是确保风力发电机组输出,电力能源的电压和被接入电网的电压在扶智相位频率等方面保持一致,能够保证风力发电并网实施后,整体电能供应的稳定性而目前的风力发电并网技术主要有两种,一种是同步风力发电并网技术,另一种是异步风力发电并网技术。

同步风力发电并网技术主要是将风力发电机和同步发电机相结合,在进行同步发电机的运行中能够有效的输出有功功率,并且能保证为发电提供必要的无功功率,促进周波稳定性提升,可以有效的提高电能稳定性。同步风电发力机具有工作效率高,体积小,结构紧凑,成本的可靠性高,维护量小等优点。该发电机的转速平稳负载特性强,周波稳定,发电机组发电电能质量高,这导致同步风力发电机在风力发电中的应用十分广泛。

同步风力发电并网技术在整个风力发电技术的应用中占很大的比重。在同步风力发电并网技术的应用中,风速波动明显会造成转子转距出现较大的波动,容易影响发电机组并网调速的准确性。为了解决这个问题,可以采用在电网和发电机组之间安装变频器的方法避免电力系统无功震荡和步失,有效的提高并网质量。

异步风力发电并网技术跟同步风力发电并网技术相比,其主要是借助转差率实现对发电机的运行复合的调整目标,在具体的调速精度方面要求并不高。这种技术能够减少相关同步,设备安装的繁琐,也可以省去整部操作环节,实现转速的适当调整。但是这种技术也有缺点,他在具体的并网操作中可能会产生冲击电流,如果产生的冲击电流过大,就会导致电网电压水平降低,不利于电网的安全运行。因此在进行异步风力发电并网技术的应用时,可以进行无功补偿,避免抽选磁路饱和和电流增大的问题。异步风力发电机组的操作不复杂,而且其对控制力要求较低,实现发电控制,只需要调节一个重要参数。他在并网后的运行方面非常稳定,不会出现失步和震荡现象。

2 解决风力发电并网技术问题和提高电能质量控制的措施

由于系统内电力电子设备被广泛的应用非线性复合的不断增加以及高压直流通电得到普及,使得系统谐波日益严重。要控制电能质量,可以从抑制谐波的产生方面出发。而电抗器、可投电容器以及无功补偿设备都可以监控无功功率的波动以及变化,他们具有非常强的抑制谐波的功能。他们可以通过静电无功补偿依靠电机的旋转运动对电网中的无功、有功相角进行调节的方法,达到补偿的目的,从而使电压输出平稳,阻止谐波的产生,还可以降低风力不稳定对电能质量的影响。

2.1 做好谐波抑制措施

在进行风力发电并网技术的应用时,想要提高电能质量控制效果,可以使用静止无功补偿器抑制谐波。静止无功补偿器可以对谐波危害问题进行有效的抑制,这种补偿器主要是由电抗器,谐波过滤装置和多台可投切电容器等共同构成。静止无功补偿器的最大特征就是具有非常强的反应能力,可以对无功功率进行实时监测,还能够实时的调整由于风速不稳定导致的电压变化,从而实现将谐波完全的滤除,从而不断的提高风力发电技术的应用,提升整体电网的电能供应质量。

2.2 有源滤波器的应用

要对电压闪变进行抑制,需在负荷电流发生急剧波动时,对负荷变化发生的无功电流进行实时补偿。现阶段,一般是采用有源滤波器,主要是由电力晶体管和可关断晶闸管构成,在一定程度上对负荷电流进行实时朴偿,同时由于该滤波器采用的是可关断的电 子器件,能利用电子控制器替代系统电源,并且向电压负荷输出畸 变电流,以此确保系统仅仅向负荷提供正弦的基波电流即可。有源滤波器设备优势突出,具有快速的响应能力、电压波动大、闪变补偿率高和补偿容量小的特征。其在运行方面稳定可靠,具有非常强的控制能力,对控制电压波动和稳定电压具有积极的作用。

2.3 动态电压恢复器的应用

在中低压配电网中,有功功率进行快速波动也会造成电压闪电的情况的发生。为了解决这种情况,就需要要求补偿装置在对无功功率进行补偿的同时,还有能够提供瞬时有功功率的补偿。动态电压恢复器是带有储能单元的补偿装置,他的出现取代了传统的无功补偿装置。能单元,能够在ms级内以正常电压和故障电压的差值,向系统注入电压,可以有效解决系统电压波动对客户的影响。动态电压恢复器能够在非常短的时间内向系统传输电压,可以有效的改善电能质量和动态电压,是解决电压波动、谐波等动态电压质量问题的最佳方法。

2.4 提高技术人员的专业能力

电力企业可以针对风电并网工作加强相关技术人员的技术培训,定期组织专业知识的培训,从而提高技术人员的专业素养,不断的提升整体风力发电网络的服务质量。电力企业可以针对风机叶片结构、故障诊断、损伤维修以及运行维护等方面开展培训工作,安排相关技术人员就严重叶片缺陷的识别,分类分级和缺陷修复建议等问题进行深入的探讨和学习。风力发电企业要继续加强技术交流和业务培训,推进风力发电技术的创新和应用,不断的提高风力发电变电技术及电能质量的控制,为电力生产的运行和维护提供有力的技术支持。

2.5 优化机组设计

对于风力发电来说,除了要关注设备本身的问题,更要注意的是把发电厂中的风力发电机组、输电线路、SVG以及变电设备等各个环节连接在一起。虽然每一个设备都是一个整体,但是对于发电企业来说,每一个设备只是整体中的一环。我们要从设备的可靠性和整个系统的可靠性出发,将技术和管理两个层面连接在一起,从整体方面考虑如何做到电能质量的有效控制。

2.6 统一电能质量控制器

对电能质量控制器进行统一,可以实现既对电压加以补偿,又对电流加以补偿的情况。统一电能质量控制器是典型的综合类补偿装置。该装置可以将串联并联补偿装置进行有效的融合,帮助用户解决综合补偿问题。这种补偿装置含有储能单元的串联、并联组合,不仅可以应用于配电系统的谐波补偿,还可以解决瞬时供电中断和电压波动等动态电压质量问题,不断的提高供电可靠性。

2.7 控制机组不脱网能力

机组在电网发生波动时,应该具有一定的抗干扰能力,一般风力发电机组应具有高电压及低电压穿越能力,即当电网电压出现一个较大值和较小值时,机组不至于立即脱网,而是可以运行几秒钟。

3 结语

随着我国对于电力技术的不断研究和深入发展,我国的风力发电技术在不断的进步,但是我国的风力发电并网技术依旧不够完善,风力发电缺乏适用的普遍性,由于环境的限制,无法应用于全部风电企业。风力发电并网技术是未来电力生产的主要技术模式,加之我国的风力资源十分丰富,我国必须要加紧对风力发电研究技术的研究,进一步提升风力发电并网技术,实现机组优化,解决现有的风力发电并网技术存在的问题,优化管理和提升设备质量,从而不断的提高电力质量,促进整体风力发电电能质量提升。

猜你喜欢
风力电能谐波
苹果皮可以产生电能
电能的生产和运输
海风吹来的电能
澎湃电能 助力“四大攻坚”
大型风力发电设备润滑概要
虚拟谐波阻抗的并网逆变器谐波抑制方法
基于ELM的电力系统谐波阻抗估计
基于ICA和MI的谐波源识别研究
电力系统谐波与谐波抑制综述
如何选择风力发电机组的CMS系统