自噬在类风湿关节炎发病机制中的作用进展

2019-10-19 21:29秦倩青玉凤周闻君王聃熊琴杨小红
中国医药导报 2019年28期
关键词:自噬发病机制类风湿关节炎

秦倩 青玉凤 周闻君 王聃 熊琴 杨小红

[摘要] 类风湿关节炎是一种慢性、炎性自身免疫性疾病,其发病机制尚未完全明确。自噬广泛存在于真核生物中,是维持细胞内正常生理活动及稳态的一种代谢过程,其异常与多种疾病发生、发展相关,近年来受到广泛关注成为研究热点之一。自噬可通过多种途径影响类风湿关节炎的发生、发展,本文就此进行综述。

[关键词] 类风湿关节炎;自噬;发病机制;综述

[中图分类号] R593.22          [文献标识码] A          [文章编号] 1673-7210(2019)10(a)-0059-04

Progress in the role of autophagy in the pathogenesis of rheumatoid arthritis

QIN Qian1   QING Yufeng2   ZHOU Wenjun2   WANG Dan2   XIONG Qin3   YANG Xiaohong1,4

1.Department of Microbiology and Immunology, College of Basic Medical Sciences, North Sichuan Medical College, Sichuan Province, Nanchong   637000, China; 2.Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong   637000, China; 3.Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong   637000, China; 4.Party Committee Office, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong   637000, China

[Abstract] Rheumatoid arthritis is a chronic, inflammatory autoimmune disease, its pathogenesis is not yet fully clear. Autophagy widely exists in eukaryotes. It is a metabolic process that maintains normal physiological activity and homeostasis in cells. Its abnormalities are related to the occurrence and development of many diseases. In recent years, autophagy has attracted wide attention and become one of the research hotspots. Autophagy can affect the occurrence and development of rheumatoid arthritis in many ways. This article reviews this aspect.

[Key words] Rheumatoid arthritis; Autophagy; Pathogenesis; Review

類风湿关节炎(RA)是一组以多关节滑膜炎为主的自身免疫性疾病,病理改变为滑膜细胞增殖、释放炎性因子沉积在关节及软骨导致关节肿痛、畸形和功能丧失。自噬是一种广泛存在于真核生物细胞中高度保守的生理过程,可维持细胞稳态并提供能量[1]。研究发现,自噬与肿瘤、代谢紊乱、自身免疫性疾病等发生密切相关[2-4],本文主要对自噬在RA发病机制中的作用进行综述。

1 自噬概述

自噬广泛存在于真核生物细胞中,通过分解自身组分维持细胞内正常生理活动及稳态。根据自噬体膜形成和运输方式的不同,将自噬分为分子伴侣介导的自噬(CMA)、微自噬、巨自噬[5]三种。其中巨自噬目前研究较多,亦为本文所述的自噬,其过程概括为细胞内的异常蛋白质或受损细胞器诱导细胞质内形成具有双层膜结构的自噬前体;自噬前体包裹目标物质形成自噬体;自噬体与溶酶体结合形成自噬溶酶体;自噬溶酶体释放水解酶消化胞内物质[6]。

2 自噬的分子机制

自噬在自噬体的形成和成熟过程中受到多种因素的调节,其中最重要的调节通路为雷帕霉素靶蛋白(mTOR)通路,它可以负向调节自噬[7-10]。

Unc-5样激酶1(ULK1)是自噬相关基因(Atg)1在哺乳动物中的同源物,是自噬启动的关键蛋白[11]。ULK1可直接调节前自噬体的形成,并与自噬相关蛋白Atg13、Atg31、Atg29形成前自噬体的核心结构。ULK1在体内主要以ULK1复合物形式发挥作用[12],当受到外界压力(如饥饿、应激)时,未被磷酸化的ULK1蛋白增加,并与Atg13结合形成Atg1-Atg13,随后结合到Atg17-Atg29-Atg31复合物上,招募其他自噬蛋白,启动细胞自噬[13]。另有研究发现,Atg101同样参与了ULK1复合物的形成,其作用为稳定Atg13、ULK1蛋白在ULK1复合物中的位置[14]。

Beclin-1是Atg6的同源物,包括Bcl-2同源结构域3(BH3)、中央螺旋区(CCD)和进化保守区(ECD),自噬调控蛋白可与Beclin-1在上述区域结合,使自噬相关基因着陆在自噬体膜上,调控自噬水平[15]。BH3结构域位于N端,通过与Bcl-2结合降低自噬激活程度;CCD结构域位于中间,其可与紫外线辐射诱导相关基因结合,促进自噬膜的形成;C端为进化保守结构域,与Vps34(PI3KC3同源物)结合形成Vps34-Beclin-1复合物,被Atg14定位到自噬体上,产生磷脂酰肌醇3-磷酸(PI3P)招募自噬相关蛋白促进自噬体的形成调节自噬水平[16]。

腺苷酸活化蛋白激酶(AMPK)是一种活性受AMP调节的蛋白激酶,根本作用是促进ATP生成,维持机体能量平衡[17]。AMPK对自噬的调节是双向的,AMPK通过检测细胞内AMP/ATP细胞压力(是否低糖或缺氧)[18],若比值增大,AMP即与AMPK结合磷酸化并激活AMPK,促进其下游靶点(包括ULK1)磷酸化诱导自噬[19],AMPK还可磷酸化mTORC1中的支架蛋白,抑制mTOR功能,增强自噬[20]。同时,AMPK本身也是ULK1的一个靶分子,ULK1可以通过负反馈调节抑制AMPK活性终止自噬信号的传递[21]。

除上述分子外,p53与p62也被证明与自噬密切相关。p53蛋白在细胞质中对自噬起抑制作用,在细胞核中起促进作用[22]。p62可作为媒介,促进底物与自噬小体结合,启动细胞自噬[23]。

3 自噬与RA

3.1 自噬与免疫细胞

胸腺上皮细胞(TECs)向幼稚T细胞提呈自身胞浆抗原对T细胞阴性选择获得对自身免疫耐受的CD4、CD8单阳性细胞至关重要[24],Mizushima[25]发现,在胸腺选择过程中TECs自噬水平增加,自身胞浆抗原通过自噬进入溶酶体参与MHCⅡ类分子加工与合成[26],Atg5阴性胸腺小鼠模型中,T细胞抗原受体(TCR)与MHCⅡ类分子的结合发生异常[24]。以上研究表明,自噬可能参与了淋巴细胞库的建立,自噬缺陷与自身免疫耐受性丧失密切相关,会引起包括RA在内的多种自身免疫性疾病的发生。

获得性免疫中,大多数效应T细胞在发挥效应后死亡,但有部分继续存活成为记忆T细胞。记忆T细胞再次接触抗原时会作出迅速有效的反应,此反应对抗继发性感染十分重要,对自身抗原却非常不利,甚至会导致自身免疫性疾病的发生[27]。最近一项研究提出,RA患者T细胞存在“自噬记忆”,通过调节糖酵解和脂肪酸合成途径基因,使记忆T细胞和效应T细胞保持更高的自噬率,具有代谢优势长期存活,最终导致关节炎[28]。

实验发现,RA患者外周血淋巴、单核和中性粒细胞中自噬体荧光强度显著高于正常人,且其强弱与RA炎症呈正相关,当患者病情得到缓解后,发现其自噬水平也随之降低[29]。同时,在RA滑液中发现中性粒细胞自噬相关蛋白LC3表达升高,滑液中白细胞介素(IL)-6、IL-8、IL-10和单核细胞趋势蛋白(MCP)-1浓度也升高,猜测上述因子可能通过细胞因子-细胞因子受体相互作用和IL-17信号通路介导RA中性粒细胞自噬[30]。

3.2 自噬与RA成纤维样滑膜细胞(FLS)

RA的主要病理特点为滑膜细胞异常增生,RA的FLS可产生多种细胞因子、趋化因子和基质降解酶,参与关节炎症和骨质破坏,是RA发病机制中的重要组成部分[31]。FLS产生大量蛋白质,当未折叠或错误折叠的蛋白质在内质网积聚至一定程度时,会造成内质网应激状态,導致细胞自噬增加[32]。另外,RA患者FLS会产生大量肿瘤坏死因子(TNF)-α,后者能有效地诱导LC3-Ⅱ、Beclin-1和p62等自噬相关基因的表达与活化,提高RA患者FLS的自噬水平;使用TNF-α抑制剂作用于FLS,发现FLS凋亡明显增加[33]。自噬可以及时清除受损、衰老的FLS,减少其凋亡,使炎症持续存在,加重RA病情。

3.3 自噬与RA骨破坏

破骨细胞是造成骨吸收的主要细胞,主要参与RA患者的骨和关节破坏。研究发现,RA破骨细胞自噬活性增强,Beclin-1和Atg7表达增高,且过表达Beclin-1可以诱导破骨细胞自噬,增强破骨细胞对骨的吸收,而抑制自噬可以阻止破骨细胞分化[34]。RA中TNF-α可以激活自噬,并调节破骨细胞分化和骨吸收[35]。T、B细胞和FLS产生核因子受体激活剂配体,并与受体结合,上调自噬促进破骨前体细胞分化为成熟破骨细胞[36],而抑制自噬可以阻断小鼠单核/巨噬细胞的破骨作用,敲除自噬底物p62也会降低破骨过程中相关基因的表达[37]。自噬可以通过破骨细胞增加RA骨破坏,加重关节症状。

4 自噬与瓜氨酸肽

瓜氨酸肽在RA发病机制和自身抗体的产生中起着至关重要的作用,抗环瓜氨酸(CCP)抗体存在常与RA预后不良相关[38],从RA患者中纯化的抗CCP抗体不仅能在体外诱导人破骨细胞分化,还能在小鼠体内引起骨的丢失[39]。研究证明,自噬对瓜氨酸肽的表达和抗CCP抗体的产生密切有关,抗原提呈细胞需要通过自噬才能成功表达瓜氨酸蛋白[40]。在RA患者的FLS中,某些瓜氨酸蛋白,如波形蛋白和α烯醇化酶,在自噬诱导剂处理后,表达量增加[41-42]。这些实验表明,自噬可能通过维持瓜氨酸肽的生成参与了自我耐受的破坏,导致RA的发生。

5 其他

研究发现,自噬会使RA患者FLS对甲氨蝶呤(MTX)治疗产生抵抗。用MTX体外刺激骨关节炎(OA)与RA患者FLS,发现RA-FLS死亡率明显低于OA-FLS,MTX可以通过增强HMGB1和Beclin-1的表达上调自噬刺激RA-FLS自噬,增加FLS存活率;抑制Beclin-1表达,可增加FLS对甲氨蝶呤的易感性,导致FLS死亡增加[43]。地塞米松可增加软骨细胞内活性氧(ROS)水平,上调自噬,促进软骨退变[44]。

6 小結与展望

综上所述,自噬对RA的影响是多方面的。但其相关机制研究还停留在表观层面,深入探究定会有助于进一步认识RA发病机制,同时为寻找新的治疗靶点提供理论、实践依据。

[参考文献]

[1]  Zech ATL,Singh SR,Schlossarek S,et al. Autophagy in cardiomyopathies [J]. Biochim Biophys Acta Mol Cell Res,2019. [Epub ahead of print].

[2]  Xie W,Zhou J. Aberrant regulation of autophagy in mammalian diseases [J]. Biol Lett,2018,14(1):20170540.

[3]  Shin JH,Park SJ,Jo DS,et al. Down-regulated TMED10 in Alzheimer disease induces autophagy via ATG4B activation [J]. Autophagy,2019,3(1):1-11.

[4]  Hao Y,Kacal M,Ouchida AT,et al. Targetome analysis of chaperone-mediated autophagy in cancer cells [J]. Autophagy,2019,3(1):1-14.

[5]  Hotchkiss RS,Strasser A,Mcdunn JE,et al. Cell death [J]. N Engl J Med,2009,361(16):1570-1583.

[6]  李宜醒,姚伟静,易聪.细胞自噬研究进展[J].中国细胞生物学学报,2019,41(2):1-9.

[7]  Saxton RA,Sabatini DM. mTOR signaling in growth,meta-bolism,and disease [J]. Cell,2017,168(6):960-976.

[8]  Wang X,Proud CG. mTORC1 signaling:what we still don′t know [J]. J Mol Cell Biol,2011,3(4):206-220.

[9]  Ranek MJ,Kokkonen-Simon KM,Chen A,et al. PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress [J]. Nature,2019,566(7743):264-269.

[10]  Rockel JS,Kapoor M. Autophagy:controlling cell fate in rheumatic diseases [J]. Nat Rev Rheumatol,2016,12(9):517-531.

[11]  Mcalpine F,Williamson LE,Tooze SA,et al. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2 [J]. Autophagy,2013,9(3):361-373.

[12]  Lee E,Tournier C. The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy [J]. Autophagy,2011,7(7):689-695.

[13]  Rao Y,Perna MG,Hofmann B,et al. The Atg1–kinase complex tethers Atg9-vesicles to initiate autophagy [J]. Nat Commun,2016,7(1):10 338.

[14]  Suzuki H,Kaizuka T,Mizushima N,et al. Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation [J]. Nat Struct Mol Biol,2015,22(7):572-580.

[15]  Levine B,Liu R,Dong X,et al. Beclin orthologs:integrative hubs of cell signaling,membrane trafficking,and physiology [J]. Trends Cell Biol,2015,25(9):533-544.

[16]  Mcknight NC,Zhong Y,Wold MS,et al. Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex [J]. PLoS Genet,2014,10(10):e1004626.

[17]  Andris F,Leo O. AMPK in lymphocyte metabolism and function [J]. Int Rev Immunol,2015,34(1):67-81.

[18]  Hardie DG. Sensing of energy and nutrients by AMP-activated protein kinase [J]. Am J Clin Nutr,2011,93(4):891S-896S.

[19]  Kim J,Kim JH,Kim YC,et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy [J]. Cell,2013,152(1-2):290-303.

[20]  Lyu S,Han D,Li X,et al. Fyn knockdown inhibits migration and invasion in cholangiocarcinoma through the activated AMPK/mTOR signaling pathway [J]. Oncol Lett,2018,15(2):2085-2090.

[21]  Szymańska P,Martin KR,Mackeigan JP,et al. Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1 [J]. PLoS One,2015,10(3):e11 6550.

[22]  Tasdemir E,Maiuri MC,Morselli E,et al. A dual role of p53 in the control of autophagy [J]. Autophagy,2014,4(6):810-814.

[23]  Matsuzawa Y,Oshima S,Nibe Y,et al. RIPK3 regulates p62-LC3 complex formation via the caspase-8-dependent cleavage of p62 [J]. Biochem Biophys Res Commun,2015,456(1):298-304.

[24]  Nedjic J,Aichinger M,Emmerich J,et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance [J]. Nature,2008,455(7211):396-400.

[25]  Mizushima N. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker [J]. Mol Biol Cell,2003,15(3):1101-1111.

[26]  Kasai M,Tanida I,Ueno T,et al. Autophagic compartments gain access to the MHC class Ⅱ compartments in thymic epithelium [J]. J Immunol,2009,183(11):7278-7285.

[27]  吳长有.初始和记忆T细胞的研究进展[J].现代免疫学,2005,25(5):353-356.

[28]  Kumar P,Yao LJ,Saidin S,et al. Molecular mechanisms of autophagic memory in pathogenic T cells in human arthritis [J]. J Autoimmun,2018,11(94):90-98.

[29]  Chen Y,Chang C,Chen H,et al. Association between autophagy and inflammation in patients with rheumatoid arthritis receiving biologic therapy [J]. Arthritis Res Ther,2018,20(1):268.

[30]  An Q,Yan W,Zhao Y,et al. Enhanced neutrophil autophagy and increased concentrations of IL-6,IL-8,IL-10 and MCP-1 in rheumatoid arthritis [J]. Int Immunopharmacol,2018,65:119-128.

[31]  Bartok B,Firestein GS. Fibroblast-like synoviocytes:key effector cells in rheumatoid arthritis [J]. Immunol Rev,2010,233(1):233-255.

[32]  Cybulsky AV. Endoplasmic reticulum stress,the unfolded protein response and autophagy in kidney diseases [J]. Nat Rev Nephrol,2017,13(11):681-696.

[33]  Dai Y,Ding J,Yin W,et al. Increased autophagy enhances the resistance to tumor necrosis factor-alpha treatment in rheumatoid arthritis human fibroblast-like synovial cell [J]. Biomed Res Int,2018,2018:1-9.

[34]  Lin N,Beyer C,Gie?覻l A,et al. Autophagy regulates TNFα-mediated joint destruction in experimental arthritis [J]. Ann Rheum Dis,2013,72(5):761-768.

[35]  Lin NY,Stefanica A,Distler JH. Autophagy:a key pathway of TNF-induced inflammatory bone loss [J]. Autophagy,2013,9(8):1253-1255.

[36]  Tanaka S. Regulation of bone destruction in rheumatoid arthritis through RANKL-RANK pathways [J]. World J Orthop,2013,4(1):1-6.

[37]  Li R,Chen G,Ren J,et al. The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis [J]. J Histochem Cytochem,2014,62(12):879-888.

[38]  任佳琦,趙金霞.抗瓜氨酸蛋白抗体阴性类风湿关节炎的诊治进展[J].中华风湿病学杂志,2018,22(7):497-500.

[39]  Krishnamurthy A,Joshua V,Haj HA,et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss [J]. Ann Rheum Dis,2016,75(4):721-729.

[40]  Ireland JM,Unanue ER. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells [J]. J Exp Med,2011,208(13):2625-2632.

[41]  Sorice M,Iannuccelli C, Manganelli V,et al. Autophagy generates citrullinated peptides in human synoviocytes:a possible trigger for anti-citrullinated peptide antibodies [J]. Rheumatology,2016,55(8):1374-1385.

[42]  Valeria M,Serena R,Antonella C,et al. Autophagy induces protein carbamylation in fibroblast-like synoviocytes from patients with rheumatoid arthritis [J]. Rheumatology,2018,57(11):2032-2041.

[43]  Xu K,Cai Y,Lu S,et al. Autophagy induction contributes to the resistance to methotrexate treatment in rheumatoid arthritis fibroblast-like synovial cells through high mobility group box chromosomal protein 1 [J]. Arthritis Res Ther,2015,17(1):374.

[44]  Shen C,Cai GQ,Peng JP,et al. Autophagy protects chondrocytes from glucocorticoids-induced apoptosis via ROS/Akt/FOXO3 signaling [J]. Osteoarthritis Cartilage,2015,23(12):2279-2287.

(收稿日期:2019-06-06  本文编辑:李亚聪)

猜你喜欢
自噬发病机制类风湿关节炎
类风湿关节炎蒙医药治疗现状与展望
中西医结合治疗类风湿关节炎的临床疗效观察
自噬在糖尿病肾病发病机制中的作用
肝性心肌病研究进展
糖尿病肾病治疗的研究进展
痛风免疫遗传学机制研究进展
浅析中医中风病的病因病机
亚精胺诱导自噬在衰老相关疾病中的作用
自噬在不同强度运动影响关节软骨细胞功能中的作用