典型固废处理处置场周边土壤重金属污染特征和成因分析

2019-10-08 07:17倪晓坤姜晓旭李宗超
农业环境科学学报 2019年9期
关键词:危废垃圾处理重金属

倪晓坤,封 雪,于 勇,姜晓旭,李宗超,李 妤,夏 新*

(1.北京科技大学能源与环境工程学院,北京 100083;2.中国环境监测总站,北京 100012)

随着经济的发展,在工业生产过程中大量产生危险废物,城镇生活水平的提高也伴随大量生活垃圾的产生。我国主要的危废和生活垃圾处理处置方式有焚烧、卫生填埋和堆肥3种,在处置过程中部分污染物随大气、水等介质传输进入土壤[1-5],对其周边土壤环境造成威胁,因此越来越多学者对危废和生活垃圾处理处置场周边的土壤环境质量开展研究。

在对危废和生活垃圾处理处置场周边土壤环境质量评价的研究中,主要有两种观点,一种认为其周边土壤重金属污染与垃圾处置方式十分相关,且垃圾焚烧是污染的主要来源[6-8],另一种观点认为其周边的重金属污染与垃圾处置方式相关性不大,主要受外部污染源影响[9-11],且不同固废处理处置场周边土壤重金属主要来源不同。

从研究对象来看,研究主要集中在生活垃圾处理处置场,而危废处理处置场研究较少;在对处置方式影响的研究中,更多研究集中在焚烧等单一处置方式的影响[12-15],多种方式复合影响评估研究较少。而实际情况是,我国危废或生活垃圾在处置时,选用多种方式处置。本研究选用浙江地区的2家危废处理处置场和1家生活垃圾处理处置场周边表层土壤进行评价,考虑焚烧、填埋多种处置方式和焚烧单一处置方式的影响,分析各类处理处置场污染特征和污染成因,多种方法综合评估土壤环境质量和风险,以期为危废和生活垃圾处理处置场污染风险管控提供参考。

1 材料与方法

1.1 研究区概况和样品采集

选取浙江地区的2家危废处理处置场(命名为A1、A2)和1家生活垃圾处理处置场(命名为B1)周边为研究区域,分别以3家处理处置场为中心,在其周边1000 m范围内依据《土壤环境监测技术规范》(HJ/T 166—2004),并结合《土壤环境监测技术要点分析》[16]进行布点,其中在主导风向的下风向布设6~8个点,在废水排放主方向布设3~5个点,其他方向布设2~4个点,人类活动区依据实际情况适当加密,共布设点位49个(图1)。每个采样点用对角线法采集1份土壤表层混合样并记录样品相关信息。

研究区地处浙江省,属于亚热带湿润季风气候,年平均气温16~19℃,主要土壤类型为棕壤、黄壤、水稻土等,主要种植水稻等农作物。土壤pH 4.13~8.53,有机质含量 1.74~33.20 g∙kg-1。研究区基本情况见表1。

1.2 实验方法

土壤pH采用玻璃电极测定,仪器型号为S220-K-CN;Hg和As用王水水浴消解,采用原子荧光法测定(GB/T 22105—2008),仪器型号为AFS-830;Cd、Cr和Pb 3种重金属使用酸消解至完全消解,Cd和Pb采用石墨炉原子吸收分光光度法测定(GB/T 17141—1997),Cr采用火焰原子吸收分光光度法测定(HJ 491—2009),仪器型号为AA7000;同时用相同方法测定空白样品,每个样品测定3次,误差在±5%之内。每批样品均使用重金属标准溶液,金属回收率均在90%~110%范围内。

1.3 土壤环境质量评价方法

1.3.1 单因子污染指数法

单因子污染指数法[17]是利用实测数据和标准数据进行比值,对研究区土壤中单一重金属的污染程度进行评价,其计算公式为:

Pi=Ci/Si

表1 研究区基本情况Table 1 The profile of study area general situation

图1 研究区点位及污染等级分布示意图Figure 1 Distribution of soil sampling sites and pollution level in the study area

式中:Pi为土壤中重金属i的单因子指数;Ci为重金属i的实测浓度,mg·kg-1;Si为评价标准中重金属 i的浓度,mg·kg-1,由于研究区为污染场地周边,且主要为农田和荒地,因此Si选取《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618—2018)中土地利用类型为“其他”的风险筛选值作为标准值(表2)。

表2 农用地土壤污染风险筛选值(GB 15618—2018)Table 2 Risk screening values for soil contamination of agricultural land(GB 15618—2018)

1.3.2 内梅罗综合污染指数法

内梅罗综合污染指数法[18]可以全面评价土壤中各污染物的综合平均污染水平,综合单因子污染指数平均值和最高值,突出较重污染重金属的环境影响,其计算公式为:

式中:PN为内梅罗综合污染指数;Pimax为i采样点中重金属单因子指数的最大值;Pi为i采样点中重金属单因子指数的算术平均值;Pi为土壤中重金属i的单因子指数。

单因子污染指数法和内梅罗综合污染指数法的分级标准具体见表3。

1.3.3 潜在生态风险指数法

潜在生态风险指数法[19]是一种用定量的方法对重金属的潜在风险程度进行划分,快速且准确反映多种重金属污染综合影响的方法[20-23]。其计算公式为:

表3 单因子污染指数法和内梅罗综合污染指数法分级标准Table 3 Classification criterion of single factor pollution index and Nemerow comprehensive pollution index

表4 重金属污染潜在生态风险指数法分级标准Table 4 Classification criterion and potential ecological risk index of heavy metals

1.4 数据处理

使用ArcGIS 10.2进行土壤重金属含量空间插值制图,使用SPSS 19.0进行数据统计分析、Pearson相关性分析和主成分分析,分辨不同重金属的来源[24-25]。使用Excel 2010进行数据记录。

2 结果与讨论

2.1 土壤重金属元素含量特征

以浙江省土壤环境背景值[26]为参照(表5),3家固废处理处置场周边表层土壤中5种重金属元素均存在不同程度的积累,Cd积累明显,A1、A2和B1周边分别为背景值的20.14、49.10、5.53倍。A1和A2周边土壤元素含量较不均匀[27],A1周边Cd、Hg和Cr的变异系数远超其他元素,分别为117.55%、107.15%、182.73%;A2周边5种元素的变异系数均较高。根据偏度和峰度情况判断,A1周边除Cr外,其他4种元素均近似正态分布,A2周边5种元素均符合对数正态分布。B1周边土壤5种重金属元素含量分布较均匀,变异系数均明显小于A1和A2,Hg、Pb和Cr近似正态分布。

2.2 土壤重金属污染程度与空间分布分析

2.2.1 土壤重金属污染程度分析

单因子污染指数法、内梅罗综合污染指数法评价结果(表6)表明,3家固废处理处置场周边首要污染物均为Cd。综合分析发现,两家危废处理处置场周边土壤污染较重,PN分别为2.15和6.68,Pimax分别为7.32和55.32,均达重度污染。A1和A2周边,50%以上点位轻度及以上污染,且都存在Cd、As和Cr污染现象;生活垃圾处理处置场PN为1.08,为轻度污染,41.18%的点位出现轻度及以上污染,污染主要由Cd和Pd造成。

表5 研究区表层土壤中重金属元素的描述性统计Table 5 Descriptive statistics for heavy metals in soil in the study area

结合研究区基本情况进一步对污染特征进行分析发现,对于危废处理处置场周边,A2的污染程度较A1明显,但运行时间短,年处理量少(表1),可见投产时间、年处理量不是影响土壤污染程度的直接原因。从危废类型来看,A2有一半的医疗危废,而A1仅处理工业危废,因此医疗危废对处理处置场周边表层土壤重金属的影响可能大于工业危废。从焚烧处理量来看,A1与A2接近,但A2污染更加严重,因此危废种类对土壤重金属强富集的影响较处置方式更大。

2.2.2 土壤重金属污染空间分布

采用普通克里金法,分别对3家固废处理处置场周边5种重金属元素含量空间分布进行插值(图2)。A1周边Cd、Hg、As和Pb含量呈岛状和带状相结合的分布特点,在主导风向的下风向(WS和W)含量较高,这可能与A1进行危废焚烧处理有关[8]。同时Cd、Hg和Pb在E、SE和N方向存在高浓度分布,根据现场调查发现,在NE方向存在水域,由于填埋过程产生的渗滤液含有大量重金属[28],该区域疑似受到渗滤液影响。Cr的空间分布与其他4种有明显区别,整体基本一致且含量较高。

A2周边Cd、Hg、As和Pb均呈现明显的风向特征,在主导风向的下风向(NW和SE)含量较高。Cr呈现岛状分布,在S方向呈高浓度分布。

B1周边Cd、Cr和As均在NW方向存在高浓度区,整体呈从NW到SE递减的变化趋势。Hg和Pb在主导风向的下风向(SE)含量较高。此外,Pb在WS方向也存在高含量区域。

2.3 土壤重金属污染成因分析

2.3.1 相关性分析

相关性分析发现(表7),A1和A2周边Cd、Hg、As和Pb呈显著正相关,具同源性,而Cr与Cd、Hg、As均不具有显著相关性。

B1周边As和Cr、Cd均呈极显著相关,Hg和Pb与其他3种元素均无显著相关性,说明生活垃圾处理处置场周边Hg、Pb与As、Cd、Cr来源不同。

2.3.2 主成分分析

3家固废处理处置场周边KMO效度检验值均在0.5以上,Bartlett球度检验P值均小于显著性水平0.05,因此对数据进行主成分分析,见表8。

A1和A2均可提取两个主成分(特征值大于1),累积方差贡献率分别为86.62%和99.96%,基本反映全部数据的主要信息。在第一主成分中,Cd、Hg、As和Pb有较高的正载荷,这种组合特征说明主要为人为污染源,这与已有研究结果一致[29-30],且验证了相关性分析中的结论。尹伊梦等[31]认为Pb和Hg的主要来源是垃圾处置,结合空间分布特征,可得第一主成分主要反映焚烧和填埋处置过程的影响,为人为因子。

第二主成分为Cr,A1周边Cr载荷为0.958,结合单因子评价结果,A1周边Cr元素有93.75%的点位为清洁状态,部分点位重度污染,可能存在高背景点位。A2周边Cr载荷为0.976,其实测含量与浙江省背景值差别不大,表明Cr主要受自然地球化学作用的影响。张一修等[32]对贵阳市土壤重金属元素含量进行评价,认为Cr主要受成土母质影响,因此A1周边第二主成分认为是自然源因子和历史因子共同作用,A2周边第二主成分认为是自然源因子。

生活垃圾处理处置场(B1)根据特征值大于1提取出两个主要成分,累积方差贡献率为75.73%,第二主成分为Hg和Pb,两者之间无显著相关性,只提取两个主成分不能完全代表全部数据的主要信息,因此根据特征值大于0.6,提取第3个主要成分,此时累积方差贡献率为89.31%,可以基本反映主要信息。第一主成分包括Cd、As和Cr,由于As和Cr的变异系数较小,含量分别为浙江省背景值的71%和85%,推断As和Cr受人为影响较少,主要是来自成土母质[33]。而Cd可能与工业活动或交通运输过程相关[30],B1周边有高速公路和其他工业企业,因此第一主成分是自然过程和周边人为活动的共同作用。第二主成分为Hg,根据Hg的空间分布特征认为垃圾焚烧是主要来源。第三主成分为Pb,结合Pb的空间分布特征可得B1周边Pb是垃圾焚烧处置和其他工业源共同作用的结果。

2.4 潜在生态风险评价

3家处理处置场周边表层土壤中Cd的潜在生态危害最大,Hg次之(表9)。其中,A1周边Cd处于“极强”风险等级,为604.26,Hg处于“很强”风险等级,为202.99。A2周边Cd和Hg均处于“极强”风险等级,Eir分别为1 473.08和441.83。B1周边Cd和Hg均在“中度”及以上等级中分布,Eir分别为 165.13 和139.64。

表6 研究区土壤重金属的单因子污染指数和内梅罗综合污染指数评价特征值统计表Table 6 Eigenvalue statistics of single factor pollution index and Nemerow pollution index of heavy metals in the study area

图2 研究区重金属含量空间分布Figure 2 Spatial distribution of heavy metals in soils in the study area

3家处理处置场的综合潜在生态风险主要来自于Cd和Hg两种元素,且主要受Cd元素的影响。A1周边Cd和Hg对RI的贡献率为95.94%(图3),仅Cd的贡献率就达71.86%。A2周边Cd和Hg对RI的贡献率达到85.91%。B1周边Cd和Hg的贡献率高达92.09%,两元素对综合生态风险的贡献程度一致。

危废处理处置场周边表层土壤中各采样点RI差别较大,局部地区风险极强,可能存在集中处置区域导致局部地区污染过重情况(表10)。生活垃圾处理处置场周边各采样点的潜在生态风险差别较小,整体比较均匀,58.82%的点位处于“中度”风险,这与郭彦海等[2]的研究结果一致。

表7 表层土壤重金属皮尔逊相关分析Table 7 Pearson correlation analysis for heavy metals in topsoil

表8 研究区表层土壤重金属元素主成分分析结果Table 8 Principal component analysis for heavy metals in surface soils from the study area

表9 研究区土壤重金属潜在生态危害评价特征值Table 9 Eigenvalue statistics of potential ecological risk of heavy metals in the study area

表10 研究区土壤重金属综合潜在生态危害评价特征值Table 10 Eigenvalue statistics of comprehensive potential ecological risk of heavy metals in the study area

图3 研究区土壤重金属元素对潜在生态危害贡献率示意图Figure 3 Contribution characteristic of heavy metals to potential ecological risk in the study area

3 结论

(1)危废处理处置场周边表层土壤重金属的污染等级和综合潜在生态风险均大于生活垃圾处理处置场,且生活垃圾处理处置场周边土壤潜在生态风险分布较均匀,危废处理处置场存在局部风险过重的情况。

(2)危废处理处置场周边Cd、Hg、As和Pb主要受危废处理处置场的影响,该过程各因素的影响程度为处置的危废种类>处置模式>处置量>投产年限。

(3)3家固废处理处置场的潜在生态风险主要来自Cd和Hg,主要受Cd的影响。Hg的污染程度未达重度级别,但潜在生态风险等级很高,原因是Hg的毒性系数较大,导致在轻微富集情况下即达强潜在生态风险等级。

(4)不同固废处理处置场周边重金属污染空间分布和主要来源不同,填埋和焚烧结合处理处置场(A1)Cd、Hg、As和Pb主要受危废焚烧和填埋共同作用,Cr受自然因素和历史因子共同作用。危废焚烧处理处置场(A2)Cd、Hg、As和Pb主要受焚烧影响,Cr主要来源成土母质。生活垃圾焚烧处理处置场(B1)Cd、As和Cr受自然因子、工业活动和交通运输的共同作用,Hg主要受垃圾焚烧影响,Pb是垃圾焚烧和其他工业源共同作用的结果。

猜你喜欢
危废垃圾处理重金属
以危废焚烧尾气洗涤塔水处理飞灰水洗液的可行性研究
沉淀/吸附法在电镀废水重金属处理中的应用
危险废物污染防治现状及管理对策
能源领域危废管理需走向精细化
建筑垃圾处理现状及优化措施的研究
生活垃圾处理方法以及大气污染治理技术分析
鱼头中重金属含量真的很高?
吃蘑菇不会重金属中毒
水泥窑协同处置危废:协同处置优势显著
吴世忠呼吁:加速推进重金属污染治理由末端治理向源头转变