董玉莹 郝建军 牟永飞
摘 要:磁感应通信方式由于其传播特性不受介质电学特性影响、无多径效应、天线尺寸小等优点,非常适合在地层介质中或水下环境传输信号使用。然而其在近场衰减快的特点,也限制了传输距离。为增加通信距离,在Zhi Sun超材料天线模型的基础上,提出了一种改进的小型超材料天线模型,即在螺旋线圈内部增加铁氧体棒,随后又对球形超材料壳内用弱磁材料进行了填充。用Comsol对此模型进行了仿真,并比较了大半径线圈模型、大半径铁氧体模型、小半径超材料模型以及改进的小半径超材料模型在不同的填充物条件下接收端天线感应的磁场强度。仿真结果表明相同传播距离条件下,改进的小半径超材料天线方案的磁通信系统的接收端天线处的磁场强度最高;如果只对接收磁天线超材料壳内加填充材料而发送端天线壳内不加填充材料的情况下,改进的小型超材料天线模型的接收天线处耦合磁场强度相比大半径的线圈模型时接收天线的磁耦合强度提高了约20 dB.
关键词:磁感应通信;超材料;铁氧体;埋地式无线传感器
中图分类号:TN 929 文献标志码:A
DOI:10.13800/j.cnki.xakjdxxb.2019.0319 文章编号:1672-9315(2019)03-0522-07
Abstract:Due to its advantages of being immune to propagation medium’s electrical characteristics and multi-path effect with small-sized antenna, magnetic induction communications are suitable for signal transmission in underground or underwater. However, fast propagation attenuation in near field limits its transmission distance. Aimed at increasing its communication range, an improved antenna model based on metamaterials, i.e., a model with a coil wound on ferrite rod in spiral is proposed. And further spherical metamaterial shell is filled with weak-magnetic material. The model is simulated using Comsol. The magnetic fields induced by the large radius coil model, the large radius coil with ferrite rod model, the small radius metamaterial model and the improved small radius metamaterial model with different fillings compared respectively. Simulation results show that the magnetic field intensity induced by the improved small radius metamaterial antenna model is the highest among aforementioned 4 models. And when the receiver antenna are filled with the weak-magnetic materials while the sender antenna filled nothing, the magnetic field intensity in receiver end induced by the improved small-sized metamaterial antenna model is enhanced by about 20dB of compared to that of the large radius coil antenna.Key words:megnetic induction communication;metamaterial;ferrite;buried wireless sensor
0 引 言
在煤矿的地下开采过程中,时常會面临着冒顶、透水、火灾、瓦斯突出等灾害[1-2],为预防可能发生的危险,必须加强对顶板压力、煤层内部温度、瓦斯浓度等情况的监测,这需要预先埋设传感器到顶板、侧壁和煤层当中,由于有线通信方式的局限,这些传感器和数据采集装置最好以无线通信的方式构成网络并与巷道的通信设备通信[3-4]。然而以电磁波为载波的无线地下传感器网络由于其信号在含水分的地层介质中存在着传播损耗巨大、信道不稳定以及天线尺寸大等缺点[5-6],不适合用于无线传感器网络的节点间通信。相比电磁波,使用磁信号为载体的通信其信道环境相对稳定,不受地层介质含水率的影响,也没有多径效应导致的信号衰落,非常适合用于无线地下传感器网络节点间的通信[7-9]。但作为信号载体的磁场强度在近场传播衰减快,这极大地限制了磁感应方式的通信距离。磁感应通信方面的研究最早始于上世纪末的低频透地通信,由于要穿透几百米的地层,这种透地通信方式的使用频率很低,这就需要使用尺寸巨大的环形天线[10-11]。2010年,Zhi Sun等人建立了无线地下磁感应信道模型[12-13],并从路径损耗和带宽等方面与电磁波通信进行对比,验证了其可行性。为了扩大通信距离,他又提出了磁感应波导技术[14-17],即在收发端之间部署多个相互耦合的中继线圈。2013年,Seok Baede等人提出了一个小型的脉冲铁氧体磁场发生器来扩大通信距离[18]。铁氧体磁芯圆柱采用具有高磁导率和低磁损耗的锰锌材料,可通过聚合线圈天线周围的磁场扩大通信距离。2016年,Zhi Sun等人提出了一个超材料增强型的磁感应机制[19]。磁感应收发端的天线线圈被一层超材料的球形外壳包围,这一层超材料外壳的磁导率为负数,可以有效地增加线圈周围的磁场。为进一步延长磁感应通信的距离,主要从增强磁场强度的角度出发,提出了改进的小型超材料天线模型。
1 改进的超材料天线模型超材料[20-21]是一种人工复合媒质,具有天然常规介质不具备的超常的物理特性,主要有左手材(双负介质)和单负介质[22-25](负介电或负磁导),具有放大消逝波、电磁隐身等优点。文中所用超材料是一种磁导率为负数的单负介质。普通的磁通信模型[26-27]是采用2个相互耦合的空芯线圈构成磁感应信号收发装置,发射线圈和接收线圈处于同心位置,其中心轴线与地面平行。如果在收发线圈外部都增加一层超材料球壳,会使磁感应信号穿过超材料层后能够增强电磁波近场的磁场分量,也就是说提高了接收端的磁场强度。其等效电路如图1所示。其中Rc为线圈电阻,Ω;Ls为线圈自感的实部,H;Lx为线圈自感的虚部,H;C为用于调谐电路谐振的补偿电容,F;Rl为接收器负载,Ω;Vg为信号源的电压,V;M为2个相邻线圈之间的互感,H.补偿电容取值为C=1ω20Ls;ω0=2πf,f为线圈的谐振频率。同时,普通的磁通信由于没有超材料的放大作用,其自感虚部Lx≈0.
4 结 论
1)在发射端的线圈内增加铁氧体磁芯棒能够增强其接收端的磁场强度。2)收发端球形外壳内填充物的不同也会影响接受端的磁场强度。选择只对接收端的球形外壳内添加相对磁导率为5的弱磁材料,该改进的小型超材料天线模型接收端的磁场强度比大半径的线圈模型增加约20 dB,比大半径的铁氧体模型增加约18 dB,比超材料模型增加约8 dB.因此在相同磁场强度下,改进的小型超材料天线模型的通信距离更远。
参考文献(References):
[1] 牛 超,施龙青,肖乐乐,等.2001—2013年煤矿生产事故分类研究[J].煤矿安全,2015,46(3):208-211.NIU Chao,SHI Long-qing,XIAO Le-le,et al.Study on accidents classification of coal mine from 2001 to 2013[J].Safety in Coal Mines,2015,46(3):208-211.
[2]孙继平.煤矿安全生产监控与通信技术[J].煤炭学报,2010,35(11):1925-1929.SUN Ji-ping.Technologies of monitoring and communication in the coal mine[J].Journal of China Coal Society,2010,35(11):1925-1929.
[3]郑学召.矿井救援无线多媒体通信关键技术研究[D].西安:西安科技大学,2013.ZHENG Xue-zhao.Research on key technology of wireless multimedia communication for mine rescue[D].Xi’an:Xi’an University of Science and Technology,2013.
[4]王伟峰,侯媛彬,李珍宝,等.煤岩介质中无线通信频率及衰减机制研究[J].西安科技大学学报,2016,36(4):577-582.WANG Wei-feng,HOU Yuan-bin,LI Zhen-bao,et al.Radio frequency and attenuation mechanism in coal and rock medium[J].Journal of Xi’an University of Science and Technology,2016,36(4):577-582.
[5]Yan L,Waynert J A,Sunderman C.Measurements and modeling of through-the-earth communications for coal mines[C]//IEEE Industry Applications Society Annual Meeting,2012,12:1-6.
[6]Akyildiz I F,Stuntebeck E P.Wireless underground sensor networks:research challenges[J].Ad Hoc Networks Journal(Elsevier),2006(7):669-686.
[7]孙彦景,徐 胜,施文娟,等.无线地下磁感应通信系统研究与实现[J].传感技术学报,2017,30(6):904-908.SUN Yan-jing,XU Sheng,SHI Wen-juan,et al.Analysis and implementation of magnetic induction wireless underground communication system[J].Chinese Journal of Sensors and Actuators,2017,30(6):904-908.[8]Guo H,Sun Z.Channel and energy modeling for self-contained wireless sensor networks in oil reservoirs[J].IEEE Transactions on Wireless Communications,2014,13(4):2258-2269.
[9]Gulbahar B,Akan O B.A communicatiion theoretical modeling and analysis of underwater magneto-inductive wireless channels[J].IEEE Transactions on Wirelss Communications,2012,11(9):3326-3334.[10]郝建軍,孙晓晨.几种透地通信技术的分析与对比[J].湖南科技大学学报(自然科学版),2014,29(1):59-63.HAO Jian-jun,SUN Xiao-chen.Analysis and comparison of several through-the-earth communication technologies for mining[J].Journal of Hunan University of Science & Technology(Natural Science Edition),2014,29(1):59-63.[11]陈二虎.矿井透地无线通信系统的研究与设计[D].西安:西安电子科技大学,2012.CHEN Er-hu.Research and design of mine through the earth wireless communication system[D].Xi’an:Xidian University,2012.
[12]Li L,Vuran M C,Akyildiz I F.Characteristics of underground channel for wireless underground sensor networks[C]//Proceedings of the Sixth Annual Mediterranean Ad Hoc Networking WorkShop,Corfu,2007:92-99.[13]Tan X,Sun Z,Akyildiz I F.Wireless underground sensor networks:MI-based communication systems for underground applications[J].IEEE Antennas &Propagation Magazine,2015,57(4):74-78.
[14]Akyildiz I F,Sun Z,Vuran M C.Signal propagation techniques for wireless underground communication networks[J].Physical Communication,2009,2(3):67-183.
[15]李 波,郝 杰,李开放,等.采用波导技术的地下传感网通信信道建模[J].西安科技大学学报,2018,38(6):1036-1040.LI Bo,HAO Jie,LI Kai-fang,et al.Communication channel modeling of underground sensing network using waveguide technology[J].Journal of Xi’an University of Science and Technology,2018,38(6):1036-1040.
[16]Sun Z,Akyildiz I F.Magnetic induction communication for wireless underground sensor networks[J].IEEE Transcations on Antennas and Propagation,2010,58(7):2426-2435.
[17]Domingo M C.Magnetic induction for underwater wireless communication networks[J].IEEE Transcations on Antennas & Propagation,2012,60(6):2929-2939.
[18]Bae S,Hong Y K,Lee J.Pulsed ferrite magnetic field generator for through-the-earth communication systems for disaster situation in mines[J].Journal of Magnetics,2013,18(1):43-49.
[19]Guo H Z,Sun Z,Sun J B,et al.M2I:channel modeling for metamaterial-enhanced magnetic induction communications[J].IEEE Transcations on Antennas & Propagation,2015,63(11):5072-5087.
[20]Sharma P,Meena R S,Bhatia D.Analytical channel model for double layer metamaterial-improved magnetic induction communication[C]//IEEE International Conference on Advances in Computing,Communications and Informatics,2017:618-622.
[21]呂建红.电磁超材料的电磁特性及其基于光学变换理论的应用[D].武汉:华中科技大学,2010.LV Jian-hong.The electromagnetic characteristics of electromagnetic metamaterials and its application based on optical transformation[D].Wuhan:Huazhong University of Science & Technology,2010.
[22]李 扬,刘传宝,周 济,等.超材料隐身理论应用于多物理场的研究进展[J].中国材料进展,2019,38(1):30-40.LI Yang,LIU Chuan-bao,ZHOU Ji,et al.Progress of metamaterial cloaking in multiple physical fields[J].Materials China,2019,38(1):30-40.
[23]Pendry J B,Holden A J,Stewart W j,et al.Extremely low frequency plasmons in metallic mesostructure[J].Physical Review Letters,1996,76(20):4773-4776.
[24]Pendry J B,Holden A.J,Robbins D J,et al.Low frequency plasmons in thin-wire structures[J].Journal of Physics Condensed Matter,1998(10):4785-4809.
[25]刘凌云,刘力鑫,张治蓝,等.电磁超材料增强无线电能传输效率研究[J].湖北工业大学学报,2018,33(1):1-4.LIU Ling-yun,LIU Li-xin,ZHANG Zhi-lan,et al.Transmission efficiency of electromagnetic metamaterial enhancing wireless power transmission system[J].Journal of Hubei University of Technology,2018,33(1):1-4.
[26]谢 璐,杨玉华,单彦虎,等.应用于无线地下传感器网络的磁通信电路分析[J].仪表技术与传感器,2016(8):123-126.XIE Lu,YANG Yu-hua,SHAN Yan-hu,et al.Analysis of magnetic induction communication circuit for wireless underground sensor network[J].Instrument Technology and Sensor,2016(8):123-126.
[27]馬 静.地表下近场磁感通信传播特性研究[D].北京:北京科技大学,2016.MA Jing.Research on underground near-field magneto-inductive propagation characteristics[D].Beijing:University of Science & Technology Beijing,2016.
[28]王 鹏,陶晋宜,贾雨龙.基于FEKO无线透地通信天线电磁特性的探究[J].微波学报,2016,32(1):70-74.WANG Peng,TAO Jin-yi,JIA Yu-long.The exploration of antenna about electromagnetic properties of the wireless through-the-earth communication based on FEKO[J].Journal of Microwave,2016,32(1):70-74.
[29]马 宁,王新刚,廖 斌.基于铁氧体材料的小型螺旋天线的仿真设计[J].真空电子技术,2013(5):45-48.MA Ning,WANG Xin-gang,LIAO Bin.Simulation design of small size ferrite spiral antenna[J].Vacuum Electronics,2013(5):45-48.