沈情情 王俊 苏占会 谢俊霞
[摘要] 目的 研究黑质(SN)区过表达α-突触核蛋白(α-syn)对小鼠运动行为的影响。
方法将40只9周龄C57BL/6J雄性小鼠随机均分为2组,实验组小鼠SN区双侧注射200 nL腺相关病毒(AAV)2/9-α-syn,对照组小鼠SN区注射等量的AAV2/9-EGFP。病毒注射4周后,采用爬杆实验和转棒实验观察小鼠的运动协调能力。
结果Western Blot检测显示,与对照组相比,实验组小鼠SN区α-syn表达明显增加(t=2.803,P<0.05)。爬杆实验显示,与对照组相比,实验组小鼠爬杆所用总时间和调头时间均明显增加(t=8.045、9.401,P<0.01)。转棒实验显示,实验组小鼠在转棒仪上停留的时间较对照组小鼠明显缩短(t=2.177,P<0.05)。
结论SN区过表达α-syn会导致小鼠运动功能障碍。
[关键词] α突触核蛋白;黑质;帕金森病;运动障碍;小鼠
[中图分类号] R338.8
[文献标志码] A
[文章编号] 2096-5532(2019)01-0021-04
INFLUENCE OF α-SYNUCLEIN OVEREXPRESSION IN THE SUBSTANTIA NIGRA ON MOTOR FUNCTION IN MICE
SHEN Qingqing, WANG Jun, SU Zhanhui, XIE Junxia
(Departmenr of Physiology, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, Chain)
[ABSTRACT]ObjectiveTo investigate the influence of α-synuclein (α-syn) overexpression in the substantia nigra (SN) on motor function in mice.
MethodsA total of 40 male C57BL/6J mice aged 9 weeks were randomly divided into control group and experimental group, with 20 mice in each group. The mice in the experimental group were given injection of 200 nL AAV2/9-α-syn into the SN at both sides, and those in the control group were given injection of an equal volume of AAV2/9-EGFP into the SN. At 4 weeks after injection, the pole test and the rotarod test were used to observe motor function.
ResultsWestern blot showed that compared with the control group, the experimental group had a significant increase in the expression of α-syn in the SN (t=2.803,P<0.05). The pole test showed that compared with the control group, the experimental group had significant increases in the total time to climb down the pole and the time to turn around (t=8.045 and 9.401,P<0.01). The rotarod test showed that the experimental group had a significantly shorter retention time on the rotarod than the control group (t=2.177,P<0.05).
ConclusionOverexpression of α-syn in the SN can lead to motor impairment in mice.
[KEY WORDS]alpha-synuclein; substantia nigra; Parkinson disease; motor disorders; mice
帕金森病(PD)是全球第二大神经退行性疾病,其运动症状主要包括静止性震颤、运动迟缓、肌强直和姿势不稳[1]。PD病人黑质(SN)致密部的多巴胺(DA)能神经元进行性丢失,出现以α-突触核蛋白(α-syn)为主要成分的路易小体(LB)[2-3]。α-syn由140个氨基酸组成,参与DA合成、重摄取和突触DA囊泡的转运等功能[4]。α-syn构象的改变会引起DA能神经元的死亡[5-6],可能与运动功能障碍有关[7],但引起α-syn错误折叠的原因尚不明确[8]。近年来,与α-syn相关的PD动物模型成为大家关注的焦点。A53T转基因小鼠作为一种常用的高表达人源性α-syn的PD模型小鼠,可以在一定程度上模拟一些与PD相关的神经病理学和行为学特征[9-11],但是,A53T基因在小鼠體内并不仅在PD相关脑区表达[12]。近年来,通过注射腺相关病毒(AAV)使其在目的脑区表达已经得到了大家广泛的认可,AAV-α-syn动物模型也越来越多地被应用于PD研究中[13-16]。本研究通过将AAV2/9-α-syn注射到小鼠双侧SN中来研究过表达α-syn对小鼠运动行为的影响。现将结果报告如下。
1 材料与方法
1.1 实验材料
SPF级8周龄雄性C57BL/6J小鼠40只,购于北京维通利华实验技术有限公司,饲养于清洁的小鼠房内,每笼4只,保证室温(21±2)℃、湿度(50±5)%、12/12 h昼夜循环光照,小鼠可自由饮水、取食。AAV由和元生物技术(上海)股份有限公司生产,实验组病毒为AAV2/9-α-syn,滴度为1.65×1016V.G./L,对照组病毒为AAV2/9-EGFP,滴度为9.95×1015V.G./L,经公司检测均可以正常表达。α-syn抗体为美国CST公司产品,β-actin抗体为中国博奥森公司产品。
1.2 动物分组及处理
待小鼠适应环境1周后,将其随机平均分为2组。利用瑞沃德公司的呼吸麻醉机将其深度麻醉后,迅速取出固定在小鼠立体定位仪上,同时用异氟烷给予持续麻醉。将小鼠用耳杆适配器固定好,使其头部平整,耳杆左右读数相同,暴露出小鼠颅骨,参照第2版小鼠脑立体定位图谱,定位并读出前囟坐标,在三维推动器的引导下至SN区,其坐标为前囟后-3.1 mm、旁开±1.4 mm、深度-4.4 mm[17]。两组小鼠均采用微量注射泵在两侧SN注射200 nL病毒,流量为0.5 nL/s,注射结束后留针10 min再缓慢退针,病毒注射4周后对小鼠进行行为学检测。
1.3 检测指标及方法
1.3.1Western Blot方法检测SN区α-syn蛋白表达 行为学实验结束后,每组取10只小鼠,用异氟烷深度麻醉后在冰上迅速断头取脑,取出SN后加入蛋白裂解液研磨均匀于冰上裂解30 min,在4 ℃下以12 000 r/min离心20 min,取上清,用BCA法测定蛋白浓度。蛋白经SDS-PAGE电泳后湿转至PVDF膜上。用50 g/L脱脂奶粉将切出的目的条带在摇床上室温封闭2 h后,分别用α-syn(1∶1 000)和β-actin(1∶10 000)的一抗于4 ℃在摇床上孵育过夜。用TBST洗3次,每次10 min,再用山羊抗兔(1∶10 000)二抗室温孵育1 h,TBST洗膜后用ECL发光液孵育1 min,用LSUVP Vision WorksTM LS软件显影后进行统计分析。
1.3.2转棒实验 使用美国Med Associates,Inc.公司的转棒仪检测小鼠运动协调能力。先将小鼠面对墙壁放在静止的转棒仪上适应2 min,适应结束后,将转棒仪转速设置为4~40 r/min,匀加速转动5 min。实验开始后,小鼠会随着转棒仪转动连续奔跑或掉落下来,5 min后转棒仪自动停止转动,系统可记录小鼠在转棒仪上停留的时间。采用非连续性测量法,测定2次,时间间隔2 h,最后取2次测量的平均值。
1.3.3爬杆实验 取一根长0.5 m、直径1 cm的木杆,在木杆顶部固定一个直径为2.5 cm的塑料球,并在木杆外表面缠满纱布防止小鼠打滑。于实验前1 d训练小鼠使其能够在杆上爬行。实验时,将小鼠头部向上贴近塑料球,使其身体自然下垂,开始计时。分别记录小鼠头部向下、后肢到达塑料球处和小鼠四肢全部到达地面的时间,作为小鼠的爬杆调头时间和总时间。每隔20 min检测1次,取5次检测的平均值,如果小鼠中间向上调头爬行或停止爬行,则重新进行检测。
1.4 统计学分析
应用SPSS 18.0软件进行统计学分析,计量资料结果以[AKx-D]±s形式表示,两独立样本均数比较采用Students t 检验,以P<0.05为差异有显著性。
2 结 果
2.1 小鼠SN区α-syn蛋白表达比较
实验组与对照组小鼠SN区α-syn表达水平分别为1.218±0.114和0.697±0.140,实验组小鼠SN区的α-syn表达明显增加,差异有统计学意义(t=2.803,P<0.05)。
2.2 α-syn对小鼠运动功能的影响
转棒实验结果显示,对照组小鼠和实验组小鼠在转棒仪上停留的时间分别为(178.40±19.04)和(128.80±13.23)s,实验组小鼠在转棒仪上停留的时间较对照组小鼠明显缩短(t=2.177,P<0.05)。爬杆实验结果显示,对照组和实验组小鼠爬杆所用总时间分别为(8.76±0.41)和(15.26±0.64)s,调头时间分别为(1.59±0.10)和(3.32±0.14)s,实验组小鼠爬杆所用总时间和调头时间均较对照组明显增加(t=8.045、9.401,P<0.01)。
3 讨 论
PD是一种多发于中老年人的中枢神经系统退行性疾病,遗传因素、环境因素、氧化应激以及炎症因素等均可参与PD的发病[18]。路易小体的出现是PD的病理特征之一,而聚集的α-syn是路易小体的主要成分。本实验对C57BL/6J小鼠双侧SN定向注射AAV2/9-α-syn后,通过转棒实验和爬杆实验研究小鼠SN内过表达α-syn对运动功能的影响。爬杆实验结果显示,与对照组相比,实验组小鼠爬杆所用总时间与调头时间均明显增加;转棒实验结果显示,与对照组相比,实验组小鼠在转棒仪上停留的时间明显缩短。上述实验结果均表明SN区过表达α-syn会使小鼠运动协调能力下降,出现明显的运动功能障碍。
运动不能、肌僵直、静止性震颤和姿势反射障碍是PD病人常见的运动症状,而α-syn异常聚集产生的毒性会造成运动功能障碍与神经变性[17]。有文献报道,过表达α-syn小鼠表现出运动功能障碍、纹状体DA丧失和神经变性[19-21]。此外有研究观察到,(Thy1)-h[A30P]-αSyn转基因小鼠出现早期中枢神经系统运动障碍[22]。本研究结果显示,在小鼠SN内注射AAV2/9-α-syn 4周后,小鼠SN区α-syn蛋白的表达量明显上升,同时小鼠出现了明显的运动功能障碍。在AAV-α-syn过表达模型中,运动损伤的出现时间和损伤程度在不同的研究中有所差异[21,23]。通常,SN区单侧注射AAV-α-syn被更广泛地应用于PD研究中,但是,与单侧注射相比,SN区双侧注射AAV-α-syn会导致更明显的病理学特征与运动功能障碍[24-29]。有研究结果显示,在大鼠SN区注射AAV6-α-syn后,囊泡單胺转运蛋白2、多巴胺转运体和酪氨酸羟化酶表达均降低30%~50%[30],这提示α-syn的过表达会导致DA合成和释放的普遍下调,进而影响运动功能。α-syn的突变与过表达也可引起线粒体功能障碍和氧化应激等[31-32],但SN区注射AAV-α-syn后是否存在线粒体功能障碍与氧化应激的改变还有待进一步研究。
綜上所述,小鼠SN区双侧注射AAV2/9-α-syn 4周会引起其SN区α-syn表达增加,小鼠出现运动功能障碍。
[参考文献]
[1]KANSARA S, TRIVEDI A, CHEN S, et al. Early diagnosis and therapy of Parkinsons disease: can disease progression be curbed[J]? Journal of Neural Transmission (Vienna, Austria:1996), 2013,120(1):197-210.
[2]BABA M, NAKAJO S, TU P H, et al. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinsons disease and dementia with Lewy bodies[J]. American Journal of Pathology, 1998,152(4):879-884.
[3]DEHAY B, BOURDENX M, GORRY P A, et al. Targeting alpha-synuclein for treatment of Parkinsons disease:mechanistic and therapeutic considerations[J]. Lancet Neurology, 2015,14(8):855-866.
[4]YU S, UEDA K, CHAN P. alpha-Synuclein and dopamine metabolism[J]. Molecular Neurobiology, 2005,31(1/3):243-254.
[5]BUTLER B, SAMBO D, KHOSHBOUEI H. Alpha-synuclein modulates dopamine neurotransmission[J]. Journal of Chemical Neuroanatomy, 2017,83(2):41-49.
[6]TOLMASOV M, DJALDETTI R, LEV N, et al. Pathological and clinical aspects of alpha/beta synuclein in Parkinsons di-sease and related disorders[J]. Expert Review of Neurotherapeutics, 2016,16(5):505-513.
[7]FORTUNA J T, GRALLE M, BECKMAN D A, et al. Brain infusion of alpha-synuclein oligomers induces motor and non-motor Parkinsons disease-like symptoms in mice[J]. Beha-vioural Brain Research, 2017,333(4):150-160.
[8]BENDOR J T, LOGAN T P, EDWARDS R H. The function of alpha-synuclein[J]. Neuron, 2013,79(6):1044-1066.
[9]PAUMIER K L, SUKOFF RIZZO S J, BERGER Z, et al. Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinsons disease[J]. PLoS One, 2013,8(8):e70274.
[10]DAWSON T M, KO H S, DAWSON V L. Genetic animal models of Parkinsons disease[J]. Neuron, 2010,66(5):646-661.
[11]CHESSELET M F. In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinsons disease[J]? Experimental Neurology, 2008,209(1):22-27.
[12]CHESSELET M F, FLEMING S, MORTAZAVI F, et al. Strengths and limitations of genetic mouse models of Parkinsons disease[J]. Parkinsonism & Related Disorders, 2008,14(Suppl 2):S84-S87.
[13]KOPRICH J B, JOHNSTON T H, REYES M G, et al. Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the path[J]. Molecular Neurodegeneration, 2010,5(1):43.
[14]MARKS J, BARTUS R T, SIFFERT J A, et al. Gene delive-ry of AAV2-neurturin for Parkinsons disease: a double-blind, randomised, controlled trial[J]. Lancet Neurology, 2010,9(12):1164-1172.
[15]ULUSOY A, DECRESSAC M, KIRIK D, et al. Viral vector-mediated overexpression of alpha-synuclein as a progressive model of Parkinsons disease[J]. Progress in Brain Research, 2010,184(3):89-111.
[16]WILLIAMS G P, SCHONHOFF A M, JURKUVENAITE A A, et al. Targeting of the class Ⅱ transactivator attenuates inflammation and neurodegeneration in an alpha-synuclein model of Parkinsons disease[J]. Journal of Neuroinflammation, 2018,15(1):244.
[17]IP C W, KLAUS L C, KARIKARI A A, et al. AAV1/2-induced overexpression of A53T-alpha-synuclein in the substantia nigra
Results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinsons disease[J]. Acta Neuropathologica Communications, 2017,5(1):11.
[18]FLEMING S M. Mechanisms of gene-environment interactions in Parkinsons disease[J]. Current Environmental Health Reports, 2017,4(2):1-8.
[19]LO BIANCO C, RIDET J L, SCHNEIDER B L, et al. alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinsons disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(16):10813-10818.
[20]VAN ROMPUY A S, OLIVERAS S M, VAN D A, et al. Nigral overexpression of alpha-synuclein in the absence of parkin enhances alpha-synuclein phosphorylation but does not modulate dopaminergic neurodegeneration[J]. Molecular Neurodegeneration, 2015,10(1):23.
[21]KIRIK D, ROSENBLAD C, BURGER C, et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system[J]. Journal of Neuroscience, 2002,22(7):2780-2791.
[22]NEUMANN M, KAHLE P J, GIASSON B I, et al. Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies[J]. Journal of Clinical Investigation, 2002,110(10):1429-1439.
[23]MULCAHY P, ODOHERTY A, PAUCARD A, et al. Development and characterisation of a novel rat model of Parkinsons disease induced by sequential intranigral administration of AAV-alpha-synuclein and the pesticide, rotenone[J]. Neuroscience, 2012,203(11):170-179.
[24]DONG Z Z, FERGER B, FELDON J, et al. Overexpression of Parkinsons disease-associated alpha-synucleinA53T by recombinant adeno-associated virus in mice does not increase the vulnerability of dopaminergic neurons to MPTP[J]. Journal of Neurobiology, 2002,53(1):1-10.
[25]GOMBASH S E, MANFREDSSON F P, KEMP C J, et al. Morphological and behavioral impact of AAV2/5-mediated overexpression of human wildtype alpha-synuclein in the rat nigrostriatal system[J]. PLoS One, 2013,8(11):e81426.
[26]VAN DER PERREN A, TOELEN J, CASTEELS C, et al. Longitudinal follow-up and characterization of a robust rat model for Parkinsons disease based on overexpression of alpha-synuclein with adeno-associated viral vectors[J]. Neuro-biology of Aging, 2015,36(3):1543-1558.
[27]FEBBRARO F, ANDERSEN K J, SANCHEZ-GUAJARDO V, et al. Chronic intranasal deferoxamine ameliorates motor defects and pathology in the alpha-synuclein rAAV Parkin-sons model[J]. Experimental Neurology, 2013,247(2):45-58.
[28]OLIVERAS-SALVA M, VAN DER PERREN A, CASADEI N, et al. rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration[J]. Molecular Neurodegeneration, 2013,8(1):44.
[29]BOURDENX M, DOVERO S, ENGELN M, et al. Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by alpha-synuclein overexpression[J]. Acta Neuropathologica Communications, 2015,3(1):46.
[30]DECRESSAC M, MATTSSON B, LUNDBLAD M, et al. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of alpha-synuclein in midbrain dopamine neurons[J]. Neurobiology of Disease, 2012,45(3):939-953.
[31]POON H F, FRASIER M, SHREVE N, et al. Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice-a model of familial Parkinsons disease[J]. Neurobiology of Disease, 2005,18(3):492-498.
[32]DEVI L, RAGHAVENDRAN V, PRABHU B M, et al. Mitochondrial import and accumulation of alpha-synuclein impair complex Ⅰ in human dopaminergic neuronal cultures and Parkinson disease brain[J]. The Journal of Biological Chemistry, 2008,283(14):9089-9100.