杜希恂 姜宏
[摘要] 帕金森病(PD)是一种与年龄密切相关的疾病,随着老龄化社会的到来,PD患病率在全球呈现显著增高态势。但到目前为止,PD的病因尚未明确,现有的治疗方法及手段也具有其局限性及副作用。本文综述了PD在病因、发病机制、非运动症状及治疗领域的研究进展,以期为PD的机制探索和个体化临床治疗提供理论基础。
[关键词] 帕金森病;神经变性疾病;非运动症状;α突触核蛋白;治疗;综述
[中图分类号] R742.5
[文献标志码] A
[文章编号] 2096-5532(2019)01-0001-06
帕金森病(PD)是一种常见的神经系统退行性疾病,以静止性震颤、肌强直、运动迟缓等运动症状和嗅觉障碍、睡眠障碍、心血管功能异常、顽固性便秘等非运动症状为主要临床表现。PD是第二大神经退行性疾病,发病率逐年增长,预计到2030年我国PD患病人数将达494万,约占全球半数,给家庭和社会带来了沉重的负担。PD的主要病理特征是黑质多巴胺能神经元选择性死亡及残存的多巴胺能神经元内形成路易小体,后者主要成分是alpha-突触核蛋白、泛素、神经丝蛋白等。但到目前为止,PD的病因尚未明确,现有的治疗方法及手段也具有其局限性及副作用。本文将从PD的病因及发病机制、非运动症状和治疗等3个方面,对目前的研究进展进行综述。
1 PD的病因及发病机制
PD的病因尚不清楚,可能与年龄老化、环境因素以及基因之间复杂的相互作用有关[1-2]。而具体发病机制与蛋白质异常聚集、线粒体功能障碍、炎症等因素有关。
1.1 PD的病因
流行病学调查结果表明,PD全人群患病率约为0.3%,其中,65岁以上人群的发病率为1%~2%,而85岁以上人群则为3%~5%[3]。虽然大多数的PD病人属于散发型,但是仍有10%~15%的病人属于遗传型。已经有19个致病基因被证实与PD相关,它们在表型、致病年龄和遗传方式方面存在一定程度的差异[4]。除了致病突变,全基因组关联分析(GWAS)也证实这些基因,如编码alpha-突触核蛋白(SNCA)基因、微管相关蛋白tau(MAPT)基因、富亮氨酸重復激酶2(LRRK2)基因、葡萄糖神经酰胺酶β(GBA)基因的常见遗传变异,也能够增加PD的易感性[5]。
同时,大量研究报道证实,环境中的多种因素,如农药、铁离子、锰离子等与PD的发病相关。除草剂、杀虫剂等能够显著增加PD的患病风险,而经典的制备PD动物模型的神经毒素1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP),正是除草剂的主要成分之一[6]。此外,金属离子铁也被证实能够增加PD的发病风险,流行病学证据已显示职业性接触或摄入高铁均能增加PD发病风险[7-8]。前瞻性研究结果也表明,食物中摄入的非血红蛋白铁可以导致PD的发病风险增加30%[9]。铁在黑质区的选择性聚集也是诱导PD发病的重要原因之一。尸检报告指出,PD病人黑质致密部残存的多巴胺能神经元内有铁沉积[10-11]。经颅彩色超声报告也指出,PD病人脑内黑质区铁水平的增高要明显早于其临床症状的出现[12-13]。异常聚集的铁不但可以通过Fenton反应进一步生成羟自由基(OH·),诱导神经元损伤,还能够直接与alpha-突触核蛋白结合,促进其聚集[14-15]。同时,金属离子锰、镁、铜、锌等亦被证实参与了PD的发病过程[16-20]。
1.2 PD的发病机制
1.2.1蛋白质异常聚集 PD病人黑质内残存的多巴胺能神经元内普遍存在由聚集的alpha-突触核蛋白形成的路易小体[21]。alpha-突触核蛋白是一种可溶性的小分子蛋白,在生理条件下,主要存在于神经元突触前末梢内,不具有神经毒性作用。但在某些因素作用下,如氧化应激、铁离子或遗传因素等,能够引起alpha-突触核蛋白的错误折叠,当alpha-突触核蛋白由可溶单体结合为寡聚体或者是不可溶的淀粉样沉积时,就会通过改变神经元膜电位以及神经元内氧化应激状态而最终导致神经元死亡[22-24]。大量研究表明,错误折叠的alpha-突触核蛋白能够像朊病毒一样,通过神经网络在不同细胞之间传播,并且能够在新的宿主细胞内诱导alpha-突触核蛋白发生聚集[25-28]。基于异常聚集的alpha-突触核蛋白的分布,有人提出了PD脑内病理进展的六级分级假说,认为PD的发病部位首先在延髓,最先出现alpha-突触核蛋白的异常聚集,进而延伸累及蓝斑、延髓上端、脑桥、黑质,最后弥漫整个大脑皮质[25,29]。
1.2.2线粒体功能障碍 线粒体功能障碍也是引起PD黑质多巴胺能神经元损伤的原因之一[30-32]。DJ-1(PARK 7)、PINK1(PARK 6)和parkin(PARK 2)功能缺失突变能够导致常染色体隐性、早发型PD的发生,而这3种基因编码的产物都直接参与了线粒体的生物学活动,并能够影响线粒体的正常功能[33-35]。而与常染色体显性遗传性PD相关的基因发生突变,包括SNCA(PARK 1)、LRRK2(PARK 8)和CHCHD2,也都能够导致线粒体功能障碍[32,36]。此外,鱼藤酮作为一种经典的制备PD模型的毒素,主要是通过抑制线粒体复合物Ⅰ的功能进而引起神经元的损伤[37]。尸检报告也指出,PD病人黑质区线粒体复合物Ⅰ的功能降低[38]。因此,在PD中,线粒体的损伤和氧化应激之间形成恶性循环而引起生物能量危机,最终导致多巴胺能神经元死亡[32]。
1.2.3炎症 炎症也在多巴胺能神经元的选择性损伤和PD的发病机制中发挥着极为重要的作用。尸检报告指出,PD病人脑内黑质区有小胶质细胞和星形胶质细胞的激活,黑质-纹状体系统内的促炎性因子和趋化因子的表达也显著增加[39],从而启动或加剧神经元的损伤,而神经元的损伤又会进一步激活小胶质细胞,最终形成一个恶性循环[40]。星形胶质细胞还能将神经元释放的alpha-突触核蛋白吞入,形成包涵体,促进炎症反应的发生[41]。临床研究表明,PD病人脑脊液中C-反应蛋白等炎症标志物水平的改变与PD病人的抑郁、认知障碍等非运动症状严重程度密切相关[42]。而动物实验结果表明,在炎症早期,应用COX-2和促炎性细胞因子抑制剂可有效地抑制多巴胺能神经元的损伤[43]。研究也证实,肠道慢性炎症也能够促进PD的发生进程[44]。
2 PD的非运动症状
PD的运动症状包括静止性震颤、肌强直、运动迟缓等,这方面的相关研究已很多,在这里不再赘述。而近年来的研究表明,在出现运动症状之前,绝大多数的PD病人会出现一系列的非运动症状,包括嗅觉障碍、睡眠障碍、心血管功能异常以及顽固性便秘等[45-46]。所以,随着研究的进一步深入,PD非运动症状及其在疾病早期诊断中的重要性越来越受到研究者的广泛关注。
2.1 嗅觉障碍
嗅觉障碍已被证实是PD病人最早出现的非运动症状。大约85%的PD病人都会发生,50%左右的PD病人在运动症状出现之前就会发生嗅觉的减退[47]。嗅觉障碍既可以发生在运动症状出现之前,也可以发生在PD运动症状出现期间,有的病人甚至在其运动症状出现10年以后,才表现出嗅觉障碍。此外,嗅觉障碍与PD的严重程度以及疾病的发展速度密切相关,有研究指出,若PD病人出现较为严重的嗅觉功能减退,则提示疾病发展为帕金森病痴呆(PDD)的风险性显著增加[48]。
2.2 睡眠障碍
睡眠障碍也是PD常见的一种非运动症状,大约95%的PD病人出现睡眠障碍。睡眠障碍主要包括失眠、白天嗜睡、快速眼动期睡眠行为障碍(RBD)及不宁腿综合征等。其中,50%~74%的PD病人存在白天嗜睡,25%~50%的PD病人会发生RBD,白天嗜睡及RBD均可在PD的运动症状之前出现。而对原发性RBD病人的长期随访研究表明,约85%的RBD会发展为PD或者其他神经退行性疾病,提示RBD可能是PD的临床前症状[49]。此外,也有研究报道,发生白天嗜睡的人群与未发生者相比,前者PD发病风险是后者的3.3倍,这也提示,白天嗜睡症状在对PD高危人群的识别中具有一定的价值[50]。
2.3 心血管功能异常
有80%以上的PD病人会在运动症状出现之前发生心血管的功能异常。例如,血压变化异常,其中包括直立性低血压、卧位高血压及24 h血压波动大等,而在PD病人中最常见的就是直立性低血压[51]。大约50%的PD病人,尤其是晚期病人,会相应出现卧位高血压[52-53]。也有文献报道,与正常人相比,PD病人夜间血压波动较大[54]。此外,早期PD病人会出现压力感受性反射敏感性下降和心血管系统自主神经功能障碍[55]。本实验室前期研究显示,这些非运动症状的出现与延髓心血管中枢儿茶酚胺能神经元内alpha-突触核蛋白的过表达有关[56]。
2.4 胃肠道功能障碍
胃肠道功能障碍也是PD非运动症状之一,大约90%的PD病人运动症状出现之前会出现顽固性便秘,这种非运动症状的出现可以比运动症状早出现10~17年[57]。此外,流行病学调查发现,与非便秘人群相比,顽固性便秘人群发生PD的风险大大增加[58]。本实验室前期对PD转基因小鼠的研究显示,在运动症状出现之前即出现结肠动力的下降[59],而结肠功能紊乱与脑干中alpha-突触核蛋白的沉积有关。除了顽固性便秘,胃排空延迟也是常见的胃肠道功能障碍症状之一,在PD病人中的发生率高达70%~100%[60]。在诸多调节胃肠运动的激素中,ghrelin的作用又恰巧与胃动力紧密相关,本实验室发现早期PD病人血浆中ghrelin水平降低[61]。而在运动症状出现之前,应用ghrelin进行早期干预,可以延缓PD的进程。
3 PD的治疗进展
目前,关于PD的治疗策略主要是解决多巴胺能神经元丢失引起的多巴胺减少及其功能丧失的问题,但这些治疗的效果受到副作用和缺乏长期疗效的限制。近年来,基于对PD发病机制的进一步认识,科研及临床工作者已经在尝试一些创新疗法[62]。
3.1 药物治疗
3.1.1左旋多巴(L-DOPA) 目前,国内外应用较多的PD治疗药物包括L-DOPA、多巴胺激動剂、抗胆碱能激动剂等。其中, L-DOPA是应用最为广泛、最为有效的能够改善PD运动症状的药物[63]。但随着PD病人服药时间延长,药物疗效的显著下降以及由此引起的临床上常见的“开关现象”等相关药物副作用也慢慢显现出来[64]。
3.1.2阿扑吗啡 阿扑吗啡是多巴胺受体激动剂,最新的研究报道指出,皮下注射阿扑吗啡能够显著改善晚期PD病人运动症状的波动,减少晚期PD病人的“关”期时间[65]。
3.1.3谷胱甘肽替代治疗 早期PD病人,脑内还原型谷胱甘肽水平已开始降低[66]。有研究证实还原型谷胱甘肽能够参与清除活性氧,对神经元起到保护作用。因此,谷胱甘肽替代治疗也引起了PD研究者的兴趣。但是谷胱甘肽替代疗法最大的挑战是如何将有效浓度的谷胱甘肽运送到大脑,因为这种三肽在血浆中的半衰期短,而且人类对其口服利用率低。有报道指出,鼻腔吸入可能是一种潜在的有效提高谷胱甘肽利用率的给药方式[67]。
3.1.4铁离子螯合剂 越来越多的研究表明,铁离子螯合剂在PD中具有神经保护作用[68-69]。22例早期PD病人接受不同剂量铁离子螯合剂——去铁酮(DFO)治疗6个月后,所有病人脑内齿状核和尾状核区域内铁沉积减少,3例病人脑内黑质区铁沉积减少,高剂量DFO治疗组的运动症状有所改善[70]。随后,在一项为期12个月的临床试验中,40例早期PD病人在接受多巴胺药物治疗的同时,一部分病人也接受了DFO的治疗。结果表明,接受DFO治疗的病人脑内黑质区铁的聚集和运动能力都显著改善[71]。
3.1.5胰高血糖素样肽1(GLP1)受体激动剂 流行病学和临床研究结果显示,PD和2型糖尿病(T2DM)同样作为年龄相关的慢性疾病可能具有共同的潜在的病理机制[72]。在两种疾病早期,病人都会出现葡萄糖和能量代谢方面的调节紊乱[73]。艾塞那肽(GLP1受体激动剂)是一种已经应用于临床的T2DM治疗药物,具有抗炎症、抗氧化,通过促进胰岛素和抑制糖原释放来调节血糖水平的作用[74]。初步临床试验表明,艾塞那肽对于PD病人具有一定的疗效[75],但其对PD病人生活质量、抑郁、运动能力、认知能力等指标的疗效有待于进一步证实。
3.2 Alpha-突觸核蛋白的靶向免疫治疗
PRX002是一种人源性的免疫球蛋白G1单克隆抗体,能直接作用于alpha-突触核蛋白的羧基端,抑制alpha-突触核蛋白的聚集。Ⅰ期临床试验已证实,PRX002能够进入中枢神经系统,降低血清中的alpha-突触核蛋白水平[76]。此外,在转基因动物模型中,alpha-突触核蛋白模拟肽疫苗也被证实能够有效降低神经元轴突和突触中的alpha-突触核蛋白寡聚体水平,进而减少多巴胺能神经元的死亡[77]。除免疫疗法以外,阻止或降低alpha-突触核蛋白的聚集也是策略之一。NPT200-11已被证实能够通过阻断alpha-突触核蛋白与细胞膜的相互作用来减少寡聚体的形成[78]。
3.3 基因治疗
ProSavin是一种病毒载体,它能够将多巴胺合成过程中的三大关键酶运送到脑内[79]。在MPTP制备的猕猴PD模型中,这种三基因疗法被证实能够显著改善PD动物的运动症状,部分重塑正常纹状体内多巴胺水平[80]。临床试验中,在接受ProSavin注射治疗后的6~12个月内,PD病人的运动功能呈现显著的剂量依赖性的提高[80]。另一种病毒载体VY-AADC,能够在晚期PD病人黑质纹状体通路中重塑多巴胺脱羧酶的表达,从而增强L-DOPA向多巴胺的转换,显著改善PD病人的运动协调能力[81-82]。
3.4 外科治疗
到目前为止,全球已经有超过10万例PD病人接受丘脑底核脑深部电刺激(DBS)手术,手术后PD症状得到了有效缓解。因此,DBS也被认为是治疗PD最有前途的外科治疗方法。早期的研究指出,DBS手术可以改善PD病人的运动评分以及减少治疗药物的剂量[83]。近年来的研究表明,DBS也可以改善PD的非运动症状,例如,改善胃肠功能障碍等[84]。但是,PD病人临床表现具有异质性,因此,针对不同亚型选择刺激位点及刺激模式仍需深入研究。
4 结语
PD的发现,距今已有200余年的历史,经过科研和临床工作者的不懈努力,人们对于PD的发病机制、非运动症状及治疗等方面的认识在不断加深。但到目前为止,PD的临床诊断更多的是依靠运动症状,而此时脑内黑质多巴胺能神经元的损伤程度已达到60%~80%。Braak分级也指出,黑质病变已经是PD发生的中期或中晚期。因此,基于运动症状的诊断所取得的治疗效果甚微。但是,在PD运动症状出现之前的几到十几年的时间,会出现多种非运动症状,这就为PD的早期诊断及治疗提供了重要的时间窗。因此,明确PD早期诊断的参考指标,针对PD高危人群研发灵敏度更高的生物学标记物及分析技术,势必成为PD领域发展的主要研究方向。
[参考文献]
[1]LESAGE S, BRICE A. Parkinsons disease: from monogenic forms to genetic susceptibility factors[J]. Hum Mol Genet, 2009,18(R1):R48-59.
[2]PRZEDBORSKI S. The two-century journey of Parkinson di-sease research[J]. Nat Rev Neurosci, 2017,18(4):251-259.
[3]DE LAU L M, BRETELER M M. Epidemiology of Parkinsons disease[J]. Lancet Neurol, 2006,5(6):525-535.
[4]DEL REY N L, QUIROGA-VARELA A, GARBAYO E, et al. Advances in Parkinsons disease: 200 years later[J]. Front Neuroanat, 2018,12:113.
[5]LILL C M. Genetics of Parkinsons disease[J]. Mol Cell Probes, 2016,30(6):386-396.
[6]ASCHERIO A, SCHWARZSCHILD M A. The epidemiology of Parkinsons disease: risk factors and prevention[J]. Lancet Neurol, 2016,15(12):1257-1272.
[7]GORELL J M, JOHNSON C C, RYBICKI B A, et al. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinsons disease[J]. Neurotoxico-logy, 1999,20(2/3):239-247.
[8]POWERS K M, SMITH-WELLER T, FRANKLIN G M, et al. Parkinsons disease risks associated with dietary iron, manganese, and other nutrient intakes[J]. Neurology, 2003,60(11):1761-1766.
[9]LOGROSCINO G, GAO X, CHEN H, et al. Dietary iron in-take and risk of Parkinsons disease[J]. Am J Epidemiol, 2008,168(12):1381-1388.
[10]REIMAO S, FERREIRA S, NUNES R G, et al. Magnetic resonance correlation of iron content with neuromelanin in the substantia nigra of early-stage Parkinsons disease[J]. Eur J Neurol, 2016,23(2):368-374.
[11]LANGLEY J, HUDDLESTON D E, MERRITT M, et al. Diffusion tensor imaging of the substantia nigra in Parkinsons disease revisited[J]. Hum Brain Mapp, 2016,37(7):2547-2556.
[12]BECKER G, SEUFERT J, BOGDAHN U, et al. Degeneration of substantia nigra in chronic Parkinsons disease visua-lized by transcranial color-coded real-time sonography[J]. Neurology, 1995,45(1):182-184.
[13]SUBRAMANIAN T, LIEU C A, GUTTALU K, et al. Detection of MPTP-induced substantia nigra hyperechogenicity in Rhesus monkeys by transcranial ultrasound[J]. Ultrasound Med Biol, 2010,36(4):604-609.
[14]OSTREROVA-GOLTS N, PETRUCELLI L, HARDY J, et al. The A53T alpha-synuclein mutation increases iron-depen-dent aggregation and toxicity[J]. J Neurosci, 2000,20(16):6048-6054.
[15]FEBBRARO F, ANDERSEN K J, SANCHEZ-GUAJARDO V, et al. Chronic intranasal deferoxamine ameliorates motor defects and pathology in the alpha-synuclein rAAV Parkin-sons model[J]. Exp Neurol, 2013,247:45-58.
[16]TONG Y, YANG H, TIAN X, et al. High manganese, a risk for Alzheimers disease: high manganese induces amyloid-beta related cognitive impairment[J]. J Alzheimers Dis, 2014,42(3):865-878.
[17]GUILARTE T R. APLP1, Alzheimers-like pathology and neurodegeneration in the frontal cortex of manganese-exposed non-human primates[J]. Neurotoxicology, 2010,31(5):572-574.
[18]MURAKAMI S, MIYAZAKI I, SOGAWA N, et al. Neuroprotective effects of metallothionein against rotenone-induced myenteric neurodegeneration in Parkinsonian mice[J]. Neurotox Res, 2014,26(3):285-298.
[19]HASHIMOTO T, NISHI K, NAGASAO J, et al. Magne-sium exerts both preventive and ameliorating effects in an in vitro rat Parkinson disease model involving 1-methyl-4-phenylpyridinium (MPP+) toxicity in dopaminergic neurons[J]. Brain Res, 2008,1197:143-151.
[20]ALTSCHULER E. Aluminum-containing antacids as a cause of idiopathic Parkinsons disease[J]. Med Hypotheses, 1999,53(1):22-23.
[21]GOEDERT M, SPILLANTINI M G, DEL TREDICI K, et al. 100 years of Lewy pathology[J]. Nat Rev Neurol, 2013,9(1):13-24.
[22]ROBERTS H L, BROWN D R. Seeking a mechanism for the toxicity of oligomeric alpha-synuclein[J]. Biomolecules, 2015,5(2):282-305.
[23]ILJINA M, GARCIA G A, HORROCKS M H, et al. Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading[J]. Proc Natl Acad Sci USA, 2016,113(9):E1206-1215.
[24]SURMEIER D J. Determinants of dopaminergic neuron loss in Parkinsons disease[J]. FEBS J, 2018,285(19):3657-3668.
[25]BRAAK H, GHEBREMEDHIN E, RUB U, et al. Stages in the development of Parkinsons disease-related pathology[J]. Cell Tissue Res, 2004,318(1):121-134.
[26]HAWKES C H, DEL TREDICI K, BRAAK H. Parkinsons disease: a dual-hit hypothesis[J]. Neuropathol Appl Neuro-biol, 2007,33(6):599-614.
[27]LI J Y, ENGLUND E, HOLTON J L, et al. Lewy bodies in grafted neurons in subjects with Parkinsons disease suggest host-to-graft disease propagation[J]. Nat Med, 2008,14(5):501-503.
[28]KORDOWER J H, CHU Y, HAUSER R A, et al. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinsons disease[J]. Nat Med, 2008,14(5):504-506.
[29]DEL TREDICI K, BRAAK H. Review: Sporadic Parkinsons disease: development and distribution of alpha-synuclein pathology[J]. Neuropathol Appl Neurobiol, 2016,42(1):33-50.
[30]DAUER W, PRZEDBORSKI S. Parkinsons disease: mechanisms and models[J]. Neuron, 2003,39(6):889-909.
[31]SCHAPIRA A H. Mitochondrial pathology in Parkinsons di-sease[J]. Mt Sinai J Med, 2011,78(6):872-881.
[32]HAELTERMAN N A, YOON W H, SANDOVAL H, et al. A mitocentric view of Parkinsons disease[J]. Annu Rev Neurosci, 2014,37:137-159.
[33]BEILINA A, COOKSON M R. Genes associated with Parkinsons disease: regulation of autophagy and beyond[J]. J Neurochem, 2016,139(Suppl 1):91-107.
[34]COOKSON M R. DJ-1, PINK1, and their effects on mitochondrial pathways[J]. Mov Disord, 2010,25(Suppl 1):S44-48.
[35]HEO J Y, PARK J H, KIM S J, et al. DJ-1 null dopaminergic neuronal cells exhibit defects in mitochondrial function and structure: involvement of mitochondrial complex Ⅰ assembly[J]. PLoS One, 2012,7(3):e32629.
[36]FUNAYAMA M, HATTORI N. CHCHD2 and Parkinsons disease-authors reply[J]. Lancet Neurol, 2015,14(7):682-683.
[37]GREENAMYRE J T, CANNON J R, DROLET R, et al. Lessons from the rotenone model of Parkinsons disease[J]. Trends Pharmacol Sci, 2010,31(4):141-142; author reply 142-143.
[38]GRUNEWALD A, RYGIEL K A, HEPPLEWHITE P D, et al. Mitochondrial DNA depletion in respiratory chain-deficient Parkinson disease neurons[J]. Ann Neurol, 2016,79(3):366-378.
[39]DELEIDI M, GASSER T. The role of inflammation in spora-dic and familial Parkinsons disease[J]. Cell Mol Life Sci, 2013,70(22):4259-4273.
[40]WANG Q, LIU Y, ZHOU J. Neuroinflammation in Parkinsons disease and its potential as therapeutic target[J]. Transl Neurodegener, 2015,4:19.
[41]LEE H J, SUK J E, PATRICK C, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies[J]. J Biol Chem, 2010,285(12):9262-9272.
[42]LINDQVIST D, HALL S, SUROVA Y, et al. Cerebrospinal fluid inflammatory markers in Parkinsons disease-associations with depression, fatigue, and cognitive impairment[J]. Brain Behav Immun, 2013,33:183-189.
[43]NOELKER C, MOREL L, LESCOT T, et al. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease[J]. Sci Rep, 2013,3:1393.
[44]HOUSER M C, TANSEY M G. The gut-brain axis: is intestinal inflammation a silent driver of Parkinsons disease pathogenesis[J]? NPJ Parkinsons Dis, 2017,3:3.
[45]SALSONE M, VESCIO B, FRATTO A, et al. Cardiac sympathetic index identifies patients with Parkinsons disease and REM behavior disorder[J]. Parkinsonism Relat Disord, 2016,26:62-66.
[46]SCHRAG A, HORSFALL L, WALTERS K, et al. Prediagnostic presentations of Parkinsons disease in primary care: a case-control study[J]. Lancet Neurol, 2015,14(1):57-64.
[47]PONT-SUNYER C, HOTTER A, GAIG C, et al. The onset of nonmotor symptoms in Parkinsons disease (the ONSET PD study)[J]. Mov Disord, 2015,30(2):229-237.
[48]CAVACO S, GONCALVES A, MENDES A, et al. Abnormal olfaction in Parkinsons disease is related to faster disease progression[J]. Behav Neurol, 2015,2015:976589.
[49]PFEIFFER R F. Non-motor symptoms in Parkinsons disease[J]. Parkinsonism Relat Disord, 2016,22(Suppl 1):S119-122.
[50]ABBOTT R D, ROSS G W, WHITE L R, et al. Excessive daytime sleepiness and subsequent development of Parkinson disease[J]. Neurology, 2005,65(9):1442-1446.
[51]ROY S, JARYAL A K, SRIVASTAVA A K, et al. Cardiovagal baroreflex sensitivity in Parkinsons disease and multiple-system atrophy[J]. J Clin Neurol, 2016,12(2):218-223.
[52]ASAHINA M, MATHIAS C J, KATAGIRI A, et al. Sudomotor and cardiovascular dysfunction in patients with early untreated Parkinsons disease[J]. J Parkinsons Dis, 2014,4(3):385-393.
[53]HAENSCH C A. Heart trouble comes early in Parkinsons disease before blood pressure falls[J]. Eur J Neurol, 2011,18(2):201-202.
[54]BENNETT M C. The role of alpha-synuclein in neurodegene-rative diseases[J]. Pharmacol Ther, 2005,105(3):311-331.
[55]OKA H, TOYODA C, YOGO M, et al. Cardiovascular dy-sautonomia in de novo Parkinsons disease without orthostatic hypotension[J]. Eur J Neurol, 2011,18(2):286-292.
[56]ZHANG Z, DU X, XU H, et al. Lesion of medullary catecholaminergic neurons is associated with cardiovascular dysfunction in rotenone-induced Parkinsons disease rats[J]. Eur J Neurosci, 2015,42(6):2346-2355.
[57]GAIG C, TOLOSA E. When does Parkinsons disease begin[J]? Mov Disord, 2009,24(Suppl 2): S656-664.
[58]SAVICA R, CARLIN J M, GROSSARDT B R, et al. Medical records documentation of constipation preceding Parkinson di-sease: a case-control study[J]. Neurology, 2009,73(21):1752-1758.
[59]WANG W, SONG N, JIA F, et al. Genomic DNA levels of mutant alpha-synuclein correlate with non-motor symptoms in an A53T Parkinsons disease mouse model[J]. Neurochem Int, 2018,114:71-79.
[60]HEETUN Z S, QUILEY E M. Gastroparesis and Parkinsons disease: a systematic review[J]. Parkinsonism Relat Disord, 2012,18(5):433-440.
[61]SONG N, WANG W, JIA F, et al. Assessments of plasma ghrelin levels in the early stages of Parkinsons disease[J]. Mov Disord, 2017,32(10):1487-1491.
[62]CHARVIN D, MEDORI R, HAUSER R A, et al. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs[J]. Nat Rev Drug Discov, 2018,17:804-822.
[63]CONNOLLY B S, LANG A E. Pharmacological treatment of Parkinson disease: a review[J]. JAMA, 2014,311(16):1670-1683.
[64]NUTT J G, WOODWARD W R, HAMMERSTAD J P, et al. The “on-off” phenomenon in Parkinsons disease. Relation to levodopa absorption and transport[J]. N Engl J Med, 1984,310(8):483-488.
[65]KATZENSCHLAGER R, POEWE W, RASCOL O, et al. Apomorphine subcutaneous infusion in patients with Parkinsons disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial[J]. Lancet Neurol, 2018,17(9):749-759.
[66]SIAN J, DEXTER D T, LEES A J, et al. Alterations in glutathione levels in Parkinsons disease and other neurodegenerative disorders affecting basal ganglia[J]. Ann Neurol, 1994,36(3):348-355.
[67]MISCHLEY L K, CONLEY K E, SHANKLAND E G, et al. Central nervous system uptake of intranasal glutathione in Parkinsons disease[J]. NPJ Parkinsons Dis, 2016,2:16002.
[68]KAUR D, YANTIRI F, RAJAGOPALAN S, et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinsons disease[J]. Neuron, 2003,37(6):899-909.
[69]WEINREB O, MANDEL S, YOUDIM M B H, et al. Targeting dysregulation of brain iron homeostasis in Parkinsons disease by iron chelators[J]. Free Radic Biol Med, 2013,62:52-64.
[70]MARTIN-BASTIDA A, WARD R J, NEWBOULD R, et al. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinsons disease[J]. Sci Rep, 2017,7(1):1398.
[71]DEVOS D, MOREAU C, DEVEDJIAN J C, et al. Targeting chelatable iron as a therapeutic modality in Parkinsons disease[J]. Antioxid Redox Signal, 2014,21(2):195-210.
[72]ATHAUDA D, FOLTYNIE T. Insulin resistance and Parkinsons disease: a new target for disease modification[J]? Prog Neurobiol, 2016,145/146:98-120.
[73]DUNN L, ALLEN G F, MAMAIS A, et al. Dysregulation of glucose metabolism is an early event in sporadic Parkinsons disease[J]. Neurobiol Aging, 2014,35(5):1111-1115.
[74]AKSOY D, SOLMAZ V, CAVUSOGLU T, et al. Neuroprotective effects of eexenatide in a rotenone-induced rat model of
Parkinsons disease[J]. Am J Med Sci, 2017,354(3):319-324.
[75]AHMANN A J, CAPEHORN M, CHARPENTIER G, et al. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 3): a 56-week, open-label, randomized clinical trial[J]. Diabetes Care, 2018,41(2):258-266.
[76]JANKOVIC J, GOODMAN I, SAFIRSTEIN B, et al. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-alpha-synuclein monoclonal antibody, in patients with parkinson disease: a randomized clinical trial[J]. JAMA Neurol, 2018,75(10):1206-1214.
[77]MANDLER M, VALERA E, ROCKENSTEIN E, et al. Next-generation active immunization approach for synucleino-pathies: implications for Parkinsons disease clinical trials[J]. Acta Neuropathol, 2014,127(6):861-879.
[78]WRASIDLO W, TSIGELNY I F, PRICE D L, et al. A de novo compound targeting alpha-synuclein improves deficits in models of Parkinsons disease[J]. Brain, 2016,139(Pt 12):3217-3236.
[79]PALFI S, GURRUCHAGA J M, RALPH G S, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinsons disease: a dose escalation, open-label, phase 1/2 trial[J]. Lancet, 2014,383(9923):1138-1146.
[80]JARRAYA B, BOULET S, RALPH G S, et al. Dopamine gene therapy for Parkinsons disease in a nonhuman primate
without associated dyskinesia[J]. Sci Transl Med, 2009,1(2):2-4.
[81]CIESIELSKA A, SAMARANCH L, SAN SEBASTIAN W, et al. Depletion of AADC activity in caudate nucleus and putamen of Parkinsons disease patients; implications for ongoing AAV2-AADC gene therapy trial[J]. PLoS One, 2017,12(2):e0169965.
[82]SAN SEBASTIAN W, KELLS A P, BRINGAS J, et al. Safety and tolerability of MRI-guided infusion of AAV2-hAADC into the mid-brain of nonhuman primate[J]. Mol Ther Me-thods Clin Dev, 2014,1:14049.
[83]WILLIAMS A, GILL S, VARMA T, et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinsons disease (PD SURG trial): a randomised, open-label trial[J]. Lancet Neurol, 2010,9(6):581-591.
[84]SCHULZ-SCHAEFFER W J, MARGRAF N G, MUNSER S, et al. Effect of neurostimulation on camptocormia in Parkinsons disease depends on symptom duration[J]. Mov Di-sord, 2015,30(3):368-372.