钟书辉 段丽华 王炜 邓友成
摘要:针对无刷直流电机(BLDCM)故障诊断问题,提出一种基于主成分分析(PCA)和支持向量机(SVM)的故障诊断方法。首先对故障时刻无刷直流电机三相电流进行分析,提取故障特征值;再由PCA从提取的故障特征值中选取敏感特征;最后使用SVM对特征值集合进行训练和测试,实现故障诊断与识别。该方法在6种无刷直流电机典型故障中进行了验证,故障诊断准确率高达92%,证实了该方法的有效性。
关键词:无刷直流电机;故障诊断;特征提取;主成分分析;支持向量机
中图分类号:TM33 文献标识码:A
无刷直流电机(Brushless DC Motor,BLDCM)因其结构简单、寿命长、效率高等特点,已在航空、航天、航海、兵器等诸多领域得到广泛应用。对BLDCM运行状态进行监测,提高BLDCM的可靠性和安全性也成为研究热点M。目前,BLDCM的故障诊断主要分为基于模型和基于信号处理技术两大类。基于模型的BLDCM故障诊断方法多通过构建高精度数学模型来实现对BLDCM甚至整个系统的故障诊断[3~5]。然而由于BLDCM的非线性特性,使得构建精确模型较为困难。
近年来,随着数字信号处理技术的快速发展,采用合适信号作为故障诊断的信号源,研究其特征与故障的对应关系已成为BLDCM故障诊断新的研究趋势。对于大中型BLDCM,多采用加装加速度传感器等方法来获取电机运行时的振动信号,通过对振动信号的分析,提取故障特征值,确定故障类型[6]。但此方法不适用于微型BLDCM。因此,又有学者提出将电机的母线电流作为故障诊断的信号源,可检测电机及电机驱动器、齿轮组、轴承、永磁体等故障[7~13]。该方法不需要增加额外传感器,且随着计算机及其相关技术的迅猛发展,已得到了越来越广泛的应用。
如果以BLDCM发生故障时三相电流作为故障信号源,由于故障发生时信号多为瞬态、冲击、非平稳信号。从BLDCM三相电流中提取故障特征值,获取数值较多,造成故障诊断的计算复杂度較高。为此,需要找到可以减少故障特征值数量,同时又能反映故障特征的方法,以降低故障诊断的复杂性。
主成分分析(Principal Components Analysis,PCA)法是一种多元统计方法,它能够对原始的特征矩阵进行降维处理,降低数据的复杂程度,并且还能够保留原始特征空间中的主要信息。在故障诊断中应用广泛[14,15]。支持向量机(Support Vector Machine,SVM)法因所需样本数量较少,支持非线性系统等优点在故障诊断中应用也较为普遍。
本文提出基于PCA和SVM的BLDCM故障诊断方法。首先对BLDCM三相电流在各种典型故障下的信号进行分析,提取故障特征值。再利用PCA对提取的故障特征值进行分析,找出敏感特征,在保障故障可被识别的前提下减少故障特征值数量。最后利用SVM进行训练和测试,实现故障诊断。通过BLDCM驱动器、霍尔信号等实际故障诊断,证明该方法的有效性。
1 故障特征提取
1.1 BLDCM组成及典型故障
图1为BLDCM组成示意图,可知BLDCM主要由电源、驱动电路、控制器、电机本体和霍尔传感器等5部分组成。其中电源和驱动电路负责根据控制器的指令对驱动电路中的MOSFET开断进行控制,从而达到改变BLDCM工作电压,进而实现BLDCM控制。霍尔传感器对BLDCM的转子位置进行检测,将结果传递给控制器,由其根据相关算法控制驱动电路[16]。
根据BLDCM组成可知,其主要故障发生在各组成部分,其中逆变电路故障和霍尔传感器故障因其具有故障比例高、危害大等原因[17,18],可作为BLDCM的典型故障。
1.2 故障特征
图2为BLDCM正常状态和一相霍尔信号短路故障时A相电流波形。由此可知BLDCM的三相绕组电流信号表现为周期性信号,故障发生时电流信号会产生变化,不同故障类型的电流信号特征也不同。因此可将三相电流故障时电流波形作为故障信号源[19,20]。通过分析故障时三相电流波形的波形指标(如峰值指标、脉冲指标、裕度指标、峭度指标等)和波形的统计量(如极差、电流变化率、均值、均方值、峰值等)作为故障特征值。
2 PCA数据降维
主成分分析法可将多个变量通过降维技术,转化为少数几个主成分即可表示原始变量大部分信息的技术。PCA的运用可使数据维度减少,降低了数据处理复杂程度,避免了维度灾难[21]。
在PCA应用于故障诊断时,一般遵循以下步骤:
(1)确定每个样本包含的故障特征值数量为P,总共包含k个样本,则由全部样本组成原始故障特征矩阵X(k×p),对X进行归一化处理,得到新的故障特征值矩阵X1。
(2)计算X1的协方差矩阵S。
(3)计算S的特征值和特征矢量。
(4)计算主成分得分矩阵Y。实现原始矩阵X在主成分空间的转换。
(5)计算Y中所有主成分的累计贡献率。当Y中前m个主成分的累计贡献率达到人为设定的阀值E时(一般累计贡献率达到90%及以上),则原始矩阵X的主成分个数为m。
由此可知,PCA可使位于高维的故障特征样本通过转换,投影到一个新的低维特征空间中,实现降维的目的。
3 基于SVM的故障诊断
支持向量机具有通用性好、鲁棒性强、计算简单等优点,同时SVM不涉及所需解决问题的内部问题,因此应用广泛[22]。SVM采用核函数将故障特征矢量映射到高维特征空间中,并在该高维空间中构造一个分类超平面作为决策曲面,将样本划分开。在该过程中,SVM中的核函数对于SVM的性能产生很大的影响。常见的SVM核函数P主要有:
(1)线性核函数
P(q,q)=q,q
(2)多项式核函数
P(q,q)=(γqq+u),γ>0
(3)径向基核函数
P(q,q)=exp(-γ‖q·q‖),γ>0
(4)两层感知器核函数
P(q,qj)=tanh(γqq+u)式中:q为输入矢量;q为第i个输入矢量;γ,u为常数。
上述4种基函数中以径向基核函数最为常用。合适的核函数将会使SVM学习速度较快、泛化性较强。
日常故障诊断中,需要对多种故障进行有效识别和分类,为此,SVM需要构造合适的多类分类器。目前,常见的SVM多类分类器可分为直接法和间接法两种。直接法是将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类[23]。但该方法计算复杂度比较高,实现起来比较困难。间接法是通过组合多个二分类器来实现多分类器的构造,又分为一对多法和一对一法两种。
(1)一对多法
训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,分类时将未知样本分类为具有最大分类函数值的那类。
(2)一对一法
其做法是在任意两类样本之间设计一个SVM,当对一个未知样本进行分类时,最后得票最多的类别即为该未知样本的类别。一对一法因为不会出现不可分的现象,具有较高的分类准确率。因此本文采用一对一法的SVM。
4 实例分析
4.1 故陈特征提取
根据BLDCM工作原理,在Matlab/Simulink中搭建BLDCM仿真模型,如图3所示。
选取单个霍尔信号故障(短路、断路)、单个MOSTET故障(短路、斷路)、两个MOSTET故障(不在同一桥臂上的两个MOSTET),正常工作状态4种故障模式。其中霍尔信号故障共计有3×2=6组故障模式。单个MOSTET则为6×2=12组故障模式,两个MOSTET则有12×4=48组故障模式,总计67种故障模式。每种故障模式样本个数为56个,所以故障模式样本总共67×56=3752组。
对于每一个故障模式样本中的三相电流,分别提取故障时电流波形的极差、平均值、电流变化率、波形指标、峰值指标、脉冲指标、裕度指标等7个特征值作为故障特征值。由于篇幅限制,仅将霍尔故障时三相电流各一个样本(1,霍尔A短路;2,霍尔A断路;3,霍尔B短路;4,霍尔B断路;5,霍尔C短路;6,霍尔C断路)的故障特征值给出,见表1。其余故障样本由于篇幅所限,不再一一列出。
4.2 PCA分析
对所有故障样本组成的故障特征组(3752×21)进行PCA主成分分析,依次计算21个主成分的累计贡献率,结果见表2。前7个主成分(每个故障样本中A相电流故障特征值)的累计贡献率已经达到93.528%。因此原来故障特征组(3752×21)经主成分分析后,可转化为新的故障特征组(3752×7)。
4.3 SVM故障识别及结果
将每个故障的56组故障样本分为测试集和验证集,分别包含40组故障样本和16组故障样本。并对每种故障类型设置不同的标签。故SVM的测试集总共有67×40=2680组故障样本,测试集则有1072组故障样本。
为验证PCA分析结果,故障特征值采用了两种方式,分别为A相电流故障特征值和三相电流故障特征值,即每个故障样本包含的故障特征值数量分别为7个和21个。
SVM采用径向基函数作为核函数,分别对PCA降维和原始故障数据分别进行SVM训练和测试,在惩罚参数和核函数参数分别取900和80时,经过PCA降维的故障特征数据识别率为86.47%(927/1072),SVM训练和测试时间为4.359s。在惩罚参数和核函数参数分别取808.6和37.7时,原始故障特征数据识别率为92.26%(989/1072),SVM训练和测试时间为9.137s。可见,经过PCA降维后的故障特征数据集在SVM中的识别率较原始故障特征数据集训练的识别率相差5.79%,但时间上节约一半左右。
利用PCA降维故障数据,分别采用BP神经网络,径向基函数神经网络和自组织特征映射神经网络进行训练和测试,得到的故障识别率分别为63.4%、71.5%和73.6%。较以上由SVM神经网络得到的92%故障识别率有着较大差距,说明选取SVM神经网络的正确性和有效性。
5 结论
利用BLDCM故障发生时三相电流波形,提取故障特征值,通过PCA运算得到降维的故障特征数据集。将降维后的故障特征数据集和原始故障特征数据集分别在SVM中进行训练和测试,结果表明PCA降维可显著减少数据计算复杂程度,同时不会对数据识别率产生较大影响。SVM对多类故障识别具有很好的识别效果。
参考文献
[1]夏长亮.无刷直流电机控制系统[M].北京:科学出版社,2009.Xia Changliang.Brushless DC motor control system[M].Beijing:Science Press,2009.(in Chinese)
[2]张媛,陈宏韬,赵嵩.航天用无刷直流电动机故障模式及危害性分析[J].微特电机,2015,43(2):27-30.
[3]杨秉岩,程绍成,朱伟,等.基于传递函数识别的导弹电动舵机故障诊断[J].海军航空工程学院学报,2012,27(5):494-498.
[4]史贤俊,张文广,张艳,等.PSO-RBF神经网络在舵机系统故障诊断中的应用田.海军航空工程学院学报,2011,26(2):131-135.
[5]廖瑛,吴彬,曹登刚,等.基于自适应观测器的导弹电动舵机故障诊断研究[J].系统仿真学报,2011,23(3):618-621.
[6]刘冬生,赵辉,王红君,等.基于小波分析和神经网络的电机故障诊断方法研究[J].天津理工大学学报,2009,25(1):11-14.
[7]肖蕙蕙,熊隽迪,李川,等.基于定子电流检测方法的电机故障诊断[J].电机与控制应用,2008,35(1):54-57.
[8]杨明,柴娜,李广,等.基于电机驱动系统的齿轮故障诊断方法对比研究[J].电工技术学报,2016,31(19):132-140.
[9]周杨,马瑞卿,李添幸,等.无刷直流电机逆变器双管开路故障仿真研究[J].微电机,2016,49(12):70-75.
[10]杨欣荣,蒋林,王婧林,等.基于小波变换的无刷直流电机逆变器故障诊断[J].电测与仪表,2017,54(5):113-118.
[11]程啟华,盛国良.無刷直流电动机匝间短路故障检测及识别方法[J].微特电机,2014,42(2):14-17.
[12]刘昕彤,王红艳,张冬梅,等.无刷直流电机在转子偏心故障时的容错控制研究[J].电机与控制应用,2017,44(5):121-127.
[13]潘汉明,雷良育,王子辉.基于小波分析的电动汽车轮毂电机永磁体故障诊断[J].中国机械工程2016,27(11):1488-1492.
[14]张宇飞,么子云,唐孙林,等.一种基于主成分分析和支持向量机的发动机故障诊断方法阴.中国机械工程,2016,27(24):3307-3311.
[15]夏梦莹浏啸奔,陈严飞,等.基于主成分分析和自组织神经网络的柴油机故障诊断方法[J].计算机应用,2014,34(z2):184-185.
[16]柴永利,王炜,何卫国.一种无刷直流电动机故障诊断方法研究[J].微特电机,2018,46(6):49-52.
[17]杨忠林.基于小波包分解的逆变器一相开路故障诊断[J].电机与控制应用,2011,38(7):34-37.
[18]刘锴,王宜怀,徐达.无刷直流电机霍尔位置传感器故障处理研究[J].电力电子技术,2017,51(7):93-96.
[19]黄佳平.基于BP神经网络的直流电弧故障检测技术研究[D].杭州:杭州电子科技大学,2017.
[20]岳巧珍.基于峭度:小波分析的齿轮典型故障诊断方法研究[D].哈尔滨:哈尔滨理工大学,2016.
[21]谢中华.MATLAB统计分析与应用:40个案例分析[M].2版.北京:北京航空航天大学出版社,2016.
[22]王小川,史峰,郁磊,等.MATLAB神经网络43个案例分析IM].北京:北京航空航天大学出版社,2016.
[23]陈维,刘军尧,齐东科,等.基于二叉树支持向量机的某型装备故障诊断研究[J].航空兵器,2010(2):58-61.