刘攀道 黄睿 许文茸 罗佳佳 陈志坚 刘国道
摘 要 酸性磷酸酶(APase)是酸性条件下(pH < 7.0)能催化磷酸单酯或酸酐裂解从而释放无机磷酸根离子的水解酶类。紫色酸性磷酸酶(Purple acid phosphatase,PAP)是一类特殊的酸性磷酸酶,其具有鲜明的特征,如:酶的提取液呈紫色或粉色、酶活性不受酒石酸盐抑制、氨基酸序列具有5个保守结构域和双金属离子催化中心等。已有的研究表明,紫色酸性磷酸酶在植物适应低磷胁迫过程中发挥着重要作用。本文综述了紫色酸性磷酸酶的生化特性、亚细胞定位、生物学功能以及最新研究进展。
关键词 紫色酸性磷酸酶;有机磷;低磷胁迫;生物学功能
中图分类号 Q945.78 文献标识码 A
磷(phosphorus,P)是植物生长发育的限制性营养元素之一,参与植物的多种新陈代谢过程,如光合作用、能量传输、酶活性调节、膜磷脂与核酸的合成等[1]。无机可溶性磷酸盐(inorganic phosphate,Pi)是植物根系能从土壤中吸收的主要磷形式,但在大多数耕作土壤中,Pi的浓度只有0.1~10 μmol/L,远低于植物最优生长所需的Pi浓度(1 mmol/L)[2]。全球近70%的耕地存在有效磷缺乏问题,特别在酸性土壤中低磷胁迫尤为严重[3]。虽然土壤中Pi浓度低,但土壤中存在大量的有机磷,约占土壤全磷含量的30%~65%,主要以植酸磷(肌醇六磷酸)、DNA(脱氧核糖核酸)、ATP(腺嘌呤核苷三磷酸)和糖磷酯等形式存在[4]。有机磷难于被植物直接利用,只有被酸性磷酸酶降解后释放出的Pi才能被植物根系吸收[5]。目前,已鉴定的参与植物适应低磷胁迫的酸性磷酸酶,主要属于紫色酸性磷酸酶(Purple acid phosphatase,PAP)家族[6]。本文将从生化特征、亚细胞定位及生物学功能等方面,系统介绍植物PAP相关研究领域近年来取得的进展。
1 植物紫色酸性磷酸酶的鉴定
酸性磷酸酶(Acid phosphatase,APase;E.C. 3.1.3.2)是一类能催化磷酸单酯或酸酐裂解从而释放无机磷酸根离子且最适pH低于7.0的水解酶类[7]。对水稻(Oryza sativa)、小麦(Triticum aestivum)、玉米(Zea mays)、大豆(Glycine max)、菜豆(Phaseolus vulgaris)和柱花草(Stylosanthes guianensis)等的研究表明,增加酸性磷酸酶活性是这些植物中普遍存在的适应低磷胁迫机制[8-13]。利用质谱分析技术,对低磷胁迫诱导增强表达的植物酸性磷酸酶蛋白进行鉴定,结果发现其中绝大部分属于PAP家族成员,如番茄(Lycopersicon esculentum)的LeSAP1和LeSAP2[14];拟南芥(Arabidopsis thaliana)的AtPAP12和AtPAP 26 [15];菜豆的PvPAP3[12];白花羽扇豆(Lupinus albus)的LaSAP2[16]等。根据这些被鉴定的植物PAP的氨基酸序列保守结构域,通过生物信息学分析,已从不同植物中鉴定到大量的PAP或PAP-like蛋白。目前,在全基因组水平,已对拟南芥、水稻、大豆、玉米和鹰嘴豆(Cicer arietinum)的PAP编码基因家族进行了鉴定,它们分别有PAP家族成员29、26、35、33和25个[8, 10-11, 17-18]。如图1所示,将拟南芥29个PAP和其他植物中一些已报道功能的PAP进行氨基酸多序列比对,并构建蛋白进化树,植物PAP蛋白可以被分为I、II和III共3个亚家族。I亚家族可进一步被分为Ia-1、Ia-2、Ib-1和Ib-2四个子族;II亚家族可被分为IIa和IIb两个子族;III亚家族可被分为IIIa和IIIb两个子族(图1)。
2 紫色酸性磷酸酶的生化结构特征
植物中被鉴定的第一个PAP蛋白是从菜豆中分离纯化的KbPAP[19]。随后,从哺乳动物、真菌和细菌中也鉴定到了PAP或PAP-like蛋白[20-22]。尽管不同物种之间PAP的蛋白同源性较低,但它们的氨基酸序列均存在5个保守结构域,即DXG、GDXXY、GNH (D/E)、VXXH和GHXH(下划线表示7个不变的氨基酸残基)[23]。这7个保守的氨基酸残基参与了Fe3+-X(X表示二价金属离子Fe2+、Mn2+或Zn2+)双金属离子催化中心的形成[23-24]。在哺乳动物中,PAP双金属离子催化中心一般为Fe3+-Fe2+(即:二价金属离子为Fe2+),而植物PAP的二价金属离子是可变的,如菜豆KbPAP(即:PvPAP2)、大豆GmSAP和甘薯(Ipomoea batatas)IbPAP2的催化中心为Fe3+-Zn2+(即:二价金属离子为Zn2+);但甘薯IbPAP1与黄花羽扇豆(Lupinus luteus)LlPPD1的催化中心为Fe3+-Mn2+(即:二价金属离子为Mn2+)[25-28]。植物PAP双金属中心二价离子的可变性,表明其催化机制的复杂性[23]。
虽然哺乳动物PAP和植物的PAP都具有由2个夹心β折叠(β-α-β-α-β)构成的保守催化结构域,但两者在分子量大小和低聚物结构上却存在明显差异[24]。在哺乳动物和植物中,均存在一类小分子量PAP(35 ku左右),此类PAP以单体形式存在[23-24]。植物的小分子量PAP属于III亚家族(图1)。但除小分子量PAP之外,植物中還存在一类大分子量PAP,包括I亚家族PAP(约55 ku)和II亚家族PAP(约75 ku)(图1),而哺乳动物没有大分子量PAP[24]。植物的大、小分子量PAP的差异主要为两个方面,一是大分子量PAP通常以二硫键或非共价结合的方式形成同质二聚体或异质二聚体,而小分子量PAP则以单体形式存在[23-24];二是大分子量PAP的N-末端存在一个非催化结构域,而小分子量PAP无此结构域[7]。目前,植物大分子量PAP的二聚体存在形式和N-末端非催化结构域对它们的生物学功能有何影响仍不清楚[7]。
3 紫色酸性磷酸酶的生化酶学性质
植物PAP对一系列天然或人工合成的磷酸化底物具有广谱催化活性,包括硝基苯磷酸盐(ρ-NPP)、磷酸化的能量分子(如ATP和无机焦磷酸)、磷酸化的糖类和磷酸化的氨基酸等[6-7]。其中,Ia亚家族的PAP普遍对ATP和PEP(磷酸烯醇丙酮酸盐)具有强催化活性,如拟南芥的AtPAP10、AtPAP12、AtPAP25和AtPAP26[29-30];大豆的GmSAP[26];菜豆的KeACP(即:PvPAP1)和KbPAP(即:PvPAP2)[31-32];甘薯的IbPAP1[26];轮花大戟(Euphorbia characias)的EcPAP[33];洋葱(Allium cepa)的AcPEPP[34]等。与Ia亚家进化树构建采用MEGA 5软件,PAP蛋白的前2个字母表示物种拉丁名简写。
族不同,Ib-1子族的PAP普遍能水解植酸磷底物,即具有植酸酶活性,如拟南芥的AtPAP15和AtPAP23[35-36];水稻的OsPAPhy_b[37];烟草(Nic oti ana tabacum)的NtPAP[38]、大豆的GmPhy[39];玉米的ZmPAPhy_b[37];大麦的HaPAPhy_a和HaPAPhy_b2[37];小麦的TaPAPhy_a1和TaPA Phy_b1[37]。因此,Ib-1子族的PAP也被称为紫色酸性植酸酶(Purple acid phytase, PAPhy)[37]。
IIb亚家族的PAP具有核苷酸水解酶活性,根据其催化活性是否依赖金属离子激活又可被分为两类。第一类被命名为PPD(Diphosp honu cleo tide phosphatase/ phosphodiesterase,双磷酸核苷磷酸酶/磷酸二酯酶),其催化活性依赖金属离子激活,对绑定于核苷二磷酸的焦磷酸键及其他一些有机磷底物的磷酸二酯键具有高亲和力,如黄花羽扇豆的LlPPD1和紫云英(Astragalus sinicus)的AsPPD1[28, 40];另一类被命名为NPP(Nucleotide pyrophosphatase/phosphodiesterases,核苷酸焦磷酸酶/磷酸二酯酶),其能催化核苷酸或核苷酸糖类的焦磷酸键/磷酸二酯键水解,但与PPD不同,NPP的催化活性不依赖于金属离子激活,如:水稻的OsNPP1(即:OsPAP27b)、OsNPP2(即:OsPAP1b)和OsNPP6(即:OsPAP27a)[41]。此外,IIIb亚家族也有2个PAP被生化表征,即拟南芥的AtPAP17(即:AtACP5)和菜豆的PvPAP3,其中PvPAP3对ATP具有较强水解活性[12]。
近年来,关于PAP生化酶学特性的研究,除底物特异性外,对PAP抑制剂与催化剂的研究也取得了诸多进展。PAP具有酸性磷酸酶的共性,即酶活性受其催化降解产物Pi的反馈抑制,菜豆的PvPAP3、番茄的LeSAP1、拟南芥的AtPAP25和AtPAP26均具有此特征[12, 14, 30]。但是,PAP也有其他酸性磷酸酶不具备的特性,即PAP的活性不受L-酒石酸盐抑制[24]。此外,一些二价金属离子对PAP的催化活性具有激活作用,如:Mg2+能增强PvPAP3、AtPAP26、LeSAP1和LeSAP2的催化活性[12, 14-15];而Mn2+能增強AcPEPP和TaPAPhy_a1催化活性[34-37]。
4 植物紫色酸性磷酸酶的亚细胞定位
利用原位杂交、荧光蛋白标记分析、蛋白质谱分析等研究方法,来源于不同植物的PAP被证实能定位于细胞质、液泡、细胞质膜、细胞核、细胞壁、叶绿体、线粒体、质外体、过氧化物酶体[7](图2)。这些已被验证亚细胞定位的PAP中,定位于细胞壁、质外体或者根系分泌蛋白质组的PAP最多,即属于细胞分泌蛋白,如拟南芥的AtPAP10、AtPAP12、AtPAP25、AtPAP2 6 [15, 29-30];大豆的GmSAP和GmPAP1-like[42-43];水稻的OsPAP10c和OsPAP21b[44-45]等(图2)。其次,已有多个PAP被报道定位于细胞质膜,如少根紫萍(Spirodela oligorrhiza)的SoPAP[46];紫云英的AsPPD1[40];菜豆的PvPAP1和PvPAP3[12-47];柱花草的SgPAP7、SgPAP10和SgPAP26[48](图2)。值得注意的是,一些PAP被证明具有多细胞器靶向定位的特征,如AtPAP26除定位于细胞壁外,也存在于液泡中[49];AtPAP7共定位于内质网和过氧化物酶体[50];AtPAP2依赖于C-末端的一段疏水性多肽靶向叶绿体外膜、线粒体外膜或细胞质膜[51-52](图2)。PAP亚细胞定位的多样性暗示着其在植物生命活动中可能发挥着多样化的生物学功能。
5 紫色酸性磷酸酶参与植物适应低磷胁迫
通过分子生物学、正向或反向遗传学等研究方法,多个胞外PAP(定位于质外体、细胞壁、细胞质膜或根系分泌蛋白)已被证明在植物适应低磷胁迫过程中发挥着重要作用[6]。将拟南芥根系分泌的3个主要PAP基因(AtPAP10、AtPAP12和AtPAP26)突变,将导致突变体对DNA和ADP的利用能力降低[29, 53];超量表达水稻的OsPAP10a、OsPAP10c和OsPAP21b,能显著增强转基因株系对外源ATP的利用[44-45, 54];我们课题组的研究中,利用菜豆毛根转基因体系,分别超量表达GmPAP1-like、PvPAP1、PvPAP3、SgPAP7、SgPAP10和SgPAP26,能显著提高转基因材料对外源dNTP的利用能力[43, 47-48]。此外,少数几个植物PAP被证明参与外源植酸磷的活化利用,包括截形苜蓿的MtPHY1、大豆的GmPAP4和GmPAP14[55-57]。除胞外PAP外,胞内PAP也被认为参与了植物对低磷胁迫的适应,如AtPAP26被证明参与衰老叶片液泡中贮存磷的活化利用[58]。
6 紫色酸性磷酸酶的其他生物学功能
植物PAP除了在低磷胁迫下参与有机磷活化利用之外,已被证实还具有其他生物学功能。在Ia亚家族中,烟草的NtPAP12通过催化细胞壁中的α-木糖苷酶和β-葡糖苷酶脱磷酸化参与细胞壁的生物合成[59];AtPAP5参与调控拟南芥的抗病性[60];GmPAP3参与调控大豆的耐盐性[61]。在Ib-1亚家族中,多个PAPhy被证明在种子或花粉萌发过程中,参与植物组织中储藏植酸磷的活化,如AtPAP15、GmPhy、HaPAPhy_a、TaPAPhy_a1和TaPAPhy_b1等[37, 39, 62]。此外,AtPAP15还被报道参与抗坏血酸的合成[35]。在II亚家族中,AtPAP2被证实参与调控植物的碳代谢,超量表达AtPAP2能显著提高转基因拟南芥、马铃薯(Solanum tuberosum)和亚麻荠(Camelinasativa)的生物量[51, 63-64];AsPPD1参与调控紫云英根瘤的形成[40];OsNPP1则对水稻地上部淀粉的积累有负调控作用[41]。
7 展望
虽然近年来植物PAP相关的研究已取得诸多进展,但仍有许多科学问题有待更加深入的探索,主要包括以下几个方面:(1)植物PAP基因的转录调控网络研究。目前,仅拟南芥的AtPHR1和水稻的OsPHR2这2个转录因子,分别被证明靶向AtPAP10与OsPAP21b的启动子,正调控PAP基因的表达[45, 65]。鉴定调控植物PAP的转录因子将有助于解析植物适应低磷胁迫的分子网络。(2)植物PAP蛋白的翻译后修饰研究。已纯化的植物PAP蛋白中普遍存在N-糖基化修饰的现象,如KeACP、AtPAP25、AtPAP26、LlPPD1、LeIAP、LeSAP1和LeSAP2等[6-7]。N-糖基化修饰对植物PAP的功能发挥有何调控作用将是今后的研究重点之一。(3)植物体内PAP靶标底物的鉴定。当前对PAP的底物特异性研究,主要基于体外实验,绝大多数PAP在植物活体内直接催化的底物仍未鉴定,这阻碍了全面解析PAP的生物学功能[7]。PAP除了能水解有机磷底物供给植物所需的磷素营养外,一些PAP已被证明具有蛋白磷酸酶功能,如AtPAP25通過调控蛋白的脱磷酸化参与拟南芥适应低磷胁迫[30]。此外,多个植物PAP除酸性磷酸酶活性外,已被证明具有碱性过氧化物酶活性,如菜豆的KeACP、番茄的LeIAP、拟南芥的AtPAP17和AtPAP26等[14, 24, 31, 66]。但PAP的碱性过氧化物酶活性在植物生长发育过程中的功能仍不清楚。随着生命科学技术的进步,这些问题有望在将来的研究中被解决。
参考文献
梁翠月, 廖 红. 植物根系响应低磷胁迫的机理研究[J]. 生命科学, 2015, 27(3): 389-397.
Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist, 2003, 157: 423-447.
López-Arredondo D L, Leyva-González M A, González-Morales S I, et al. Phosphate nutrition: improving low-phosphate tolerance in crops[J]. Annual Review of Plant Biology, 2014, 65: 95-123.
Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics: from soil to plant[J]. Plant Physiology, 2011, 156: 997-1005.
黄 宇, 张海伟, 徐芳森. 植物酸性磷酸酶的研究进展[J]. 华中农业大学学报, 2008, 27(1): 148-154.
Wang L, Liu D. Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants[J]. Plant Science, 2018, 271: 108-116.
Tian J, Liao H. The role of intracellular and secreted purple acid phosphatases in plant phosphorus scavenging and recycling[M]//Plaxton W C, Lambers H. Annual Plant Reviews, Volume 48: Phosphorus metabolism in plants. Hoboken, New Jersey: Wiley-Blackwell, 2015: 265-287.
Zhang Q, Wang C, Tian J, et al. Identification of rice purple acid phosphatases related to phosphate starvation signalling[J]. Plant Biology, 2011, 13: 7-15.
George T S, Gregory P J, Hocking P, et al. Variation in root-associated phosphatase activities in wheat contributes to the utilization of organic P substrates in vitro, but does not explain differences in the P-nutrition of plants when grown in soils[J]. Environmental and Experimental Botany, 2008, 64: 239-249.
González-Mu?oz E, Avenda?o-Vázquez A, Montes R A C, et al. The Maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase gene family[J]. Frontiers in Plant Science, 2015, 6: 341.
Li C, Gui S, Yang T, et al. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis[J]. Annals of Botany, 2012, 109: 275-285.
Liang C, Tian J, Lam H M, et al. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization[J]. Plant Physiology, 2010, 152: 854-865.
劉攀道, 董荣书, 丁西朋, 等. 不同磷效率柱花草基因型对外源DNA活化利用能力的比较分析[J]. 分子植物育种, 2018, 16(4): 1085-1091.
Bozzo G G, Raghothama K G, Plaxton W C. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures[J]. Biochemical Journal, 2004, 377: 419-428.
Tran H T, Qian W, Hurley B A, et al. Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana[J]. Plant, Cell & Environment, 2010, 33: 1789-1803.
Miller S S, Liu J, Allan D L, et al. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin[J]. Plant Physiology, 2001, 127: 594-606.
Li D, Zhu H, Liu K, et al. Purple acid phosphatases of Arabidopsis thaliana: comparative analysis and differential regulation by phosphate deprivation[J]. Journal of Biological Chemistry, 2002, 277: 27772–27781.
Bhadouria J, Singh A P, Mehra P, et al. Identification of purple acid phosphatases in chickpea and potential roles of CaPAP7 in seed phytate accumulation[J]. Scientific Reports, 2017, 7: 11012.
Beck J L, McConachie L A, Summors A C, et al. Properties of a purple phosphatase from red kidney bean: a zinc-iron metalloenzyme[J]. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1986, 869: 61–68.
Schenk G, Guddat L W, Ge Y, et al. Identification of mammalian-like purple acid phosphatases in a wide range of plants[J]. Gene, 2000, 250: 117-125.
Schenk G, Korsinczky M L J, Hume D A, et al. Purple acid phosphatases from bacteria: similarities to mammalian and plant enzymes[J]. Gene, 2000, 255: 419-424.
Flanagan J U, Cassady A I, Schenk G, et al. Identification and molecular modeling of a novel, plant-like, human purple acid phosphatase[J]. Gene, 2006, 377: 12-20.
Schenk G, Mitic N, Hanson G R, et al. Purple acid phosphatase: a journey into the function and mechanism of a colorful enzyme[J]. Coordination Chemistry Reviews, 2013, 257: 473-482.
Tran H T, Hurley B A, Plaxton W C. Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition[J]. Plant Science, 2010,179: 14-27.
Durmus A, Eicken C, Sift B H, et al. The active site of purple acid phosphatase from aweet potatoes (Ipomoea batatas): metal content and spectroscopic characterization[J]. European Journal of Biochemistry, 1999, 260: 709-716.
Schenk G, Ge Y, Carrington L E, et al. Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean[J]. Archives of Biochemistry and Biophysics,1999, 370: 183-189.
Schenk G, Gahan L R, Carrington L E, et al. Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 273-278.
Antonyuk S V, Olczak M, Olczak T, et al. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold[J]. IUCrJ, 2014, 1: 101-109.
Wang L, Li Z, Qian W, et al. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation[J]. Plant Physiology, 2011, 157: 1283-1299.
Del Vecchio H A, Ying S, Park J, et al. The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation[J]. The Plant Journal, 2014, 80: 569-581.
Yoneyama T, Shiozawa M, Nakamura M, et al. Characterization of a novel acid phosphatase from embryonic axes of kidney bean exhibiting vanadate-dependent chloroperoxidase activity[J]. Journal of Biological Chemistry, 2004, 279: 37477–37484.
Cashikar A G, Kumaresan R, Rao N M. Biochemical characterization and subcellular localization of the red kidney bean purple acid phosphatase[J]. Plant Physiology, 1997, 114: 907-915.
Pintus F, Spano D, Corongiu S, et al. Purification, primary structure, and properties of Euphorbia characias latex purple acid phosphatase[J]. Biochemistry (Moscow), 2011, 76: 694-701.
Shinano T, Yonetani R, Ushihara N, et al. Characteristics of phosphoenolpyruvate phosphatase purified from Allium cepa[J]. Plant Science, 2001, 161: 861-869.
Liang C, Sun L, Yao Z, et al. Comparative analysis of PvPAP gene family and their functions in response to phosphorus deficiency in common bean[J]. PLoS One, 2012, 7: 65-65.
Liu P D, Xue Y B, Chen Z J, et al. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes[J]. Journal of Experimental Botany, 2016, 67: 4141-4154.
Hurley B A, Tran H T, Marty N J, et al. The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation[J]. Plant Physiology, 2010, 153: 1112-1122.
Kataya A R A, Schei E, Lillo C. Towards understanding peroxisomal phosphoregulation in Arabidopsis thaliana[J]. Planta, 2016, 243: 699-717.
Sun F, Suen P K, Zhang Y, et al. A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield[J]. New Phytologist, 2012, 194: 206-219.
Sun Q, Li J, Cheng W, et al. AtPAP2, a unique member of the PAP family, functions in the plasma membrane[J]. Genes. 2018, 9(5).
Robinson W D, Park J, Tran H T, et al. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana[J]. Journal of Experimental Botany, 2012, 63: 6531-6542.
Tian J, Wang C, Zhang Q, et al. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice[J]. Journal of Integrative Plant Biology, 2012, 54: 631-639.
Xiao K, Harrison M J, Wang Z Y. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis[J]. Planta, 2005, 222: 27-36.
Kong Y, Li X, Ma J, et al. GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana[J]. Plant Cell Reports, 2014, 33: 655-667.
Kong Y, Li X, Wang B, et al. The soybean purple acid phosphatase GmPAP14 predominantly enhances external phytate utilization in plants[J]. Frontiers in Plant Science, 2018, 9: 292.
Robinson W D, Carson I, Ying S, et al. Eliminating the purple acid phosphatase AtPAP26 in Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization[J]. New Phytologist, 2012, 196: 1024-1029.
Kaida R, Satoh Y, Bulone V, et al. Activation of β-glucan synthases by wall-bound purple acid phosphatase in tobacco cells[J]. Plant Physiology, 2009, 150: 1822-1830.
Ravichandran S, Stone S L, Benkel B, et al. Purple acid phosphatase 5 is required for maintaining basal resistance against pseudomonas syringae in Arabidopsis[J]. BMC Plant Biology, 2013, 13: 1-12.
Li W F, Shao G, Lam H M. Ectopic expression of GmPAP3 alleviates oxidative damage caused by salinity and osmotic stresses[J]. New Phytologist, 2008, 178: 80-91.
Kuang R, Chan K, Yeung E, et al. Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity, in Arabidopsis[J]. Plant Physiology, 2009, 151: 199-209.
Zhang Y, Yu L, Yung K F, et al. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield[J]. Biotechnology for Biofuels, 2012, 5:19.
Zhang Y, Sun F, Fettke J, et al. Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development[J]. FEBS Letters, 2014, 588: 3726-3731.
Sun L, Song L, Zhang Y, et al. Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation[J]. Plant Physiology, 2016, 170: 499-514.
Del Pozo J C, Allona I, Rubio V, et al. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions[J]. The Plant Journal, 1999, 19: 579-589.