张伟明
摘 要:电缆故障在电力系统中时有发生,文章以机组真空泵开关柜内一次电缆烧损事件为例,详细统计分析故障的原因以及后续的对策和管理提升手段,可为维护处理提供借鉴。
关键词:真空泵;电缆;烧损
中图分类号:TM35 文献标志码:A 文章编号:2095-2945(2019)07-0129-02
Abstract: Cable faults occur from time to time in the power system. Taking a cable burning event in the vacuum pump switchgear of the unit as an example, this paper makes a detailed statistical analysis of the causes of the fault and the subsequent countermeasures and management improvement means, which can be used for reference for maintenance and treatment.
Keywords: vacuum pump; cable; burning loss
引言
置于水下的圆柱壳体由于受到水压作用而存在强度刚度问题。受压下的壳体常需开设各种孔口,如仪表、部件的安装孔、检查孔等;开孔壳体存在着强度和刚度的削弱。開孔壳体的补强问题不仅影响了壳体是否安全,而且也是整体系统结构静力学优化的关键环节之一[1]。利用MSC.Patran[2]建立SHELL单元模型对开孔壳体进行了强度分析,把开孔影响区域作为一个补强模块,通过改变补强模块的厚度,计算得到满足工程要求的设计。
1 有限元计算模型
根据结构特点,建立了两种有限元计算模型,一种模型是没有补强的原始模型;另一种是在原有模型的基础上进行补强。图1为开孔圆柱壳体剖面示意图,图2为有限元计算模型图,约束形式为圆柱壳体两端全约束,载荷形式为圆柱壳体外部承受均布压力。
图3为有补强的开孔圆柱壳体结构剖面图。补强模型建立分为两步:第一步,不从开孔圆向外延伸20mm,建立壳体上的圆环并进行网格划分;第二步,对开孔圆边界线进行BAR单元分网,同时建立局部柱坐标系,在局部柱坐标系把BAR单元按10mm长度、5等份拉伸(Extrude)成shell单元[3],最后进行重合节点的合并。
图4为补强有限元模型图,壳体补强有限元网格与壳体原有限元网格完全重合,重合区域按两部分壳单元分别输入厚度,这样就无需进行壳单元的偏置。由于补强模型由壳单元建立,所以,只要简单地修改壳单元的厚度就能够得到工程上限制的圆柱壳体开孔区域的最大应力。
2 数值仿真结果
图5给出开孔壳体最大等效应力云图,可以看出,开孔壳体最大等效应力为1730MPa,由于应力集中使得结构已经失稳,所以必须进行补强工作。
补强计算是通过改变补强模块壳单元的厚度进行多次计算得到的,共进行了10次计算,图6给出第10次计算开孔壳体最大等效应力云图,最大值为136MPa;图7给出补强模块的最大等效应力云图,最大值为163MPa,可以看出,最大等效应力已经满足了设计要求。从图中可以看出,结构的强度和刚度具有明显的改善。
随着补强模块厚度改变增大,开孔壳体最大等效应力减小,表1给出补强模块厚度按25%增大时,开孔壳体最大等效应力的变化,图8给出开孔壳体最大等效应力与补强模块厚度关系曲线,为无量纲值。
3 结论
利用有限元分析软件可以很好解决圆柱壳体的开孔和补强问题。采用壳体结构进行补强操作简单,由于壳单元厚度的参数化,用户不用修改模型,也无须使用PCL编程就可以达到最优结果。该方法可以很好用于分析圆柱壳体的开孔和补强的力学特性,为工程设计带来方便。
参考文献:
[1]强保平.飞机结构强度地面试验[M].北京:航空工业出版社,2014.
[2]MSC Software.Pastran reference[K].2012.
[3]张永昌.MSC/Nastran有限元分析理论基础与应用[M].北京:科学出版社,2004.