王新龙,王晓东,雷小楠,卢 杰,韩路长
(1.中国石化 巴陵石化分公司,湖南 岳阳 414000;2.湘潭大学 化工学院,湖南 湘潭 411105)
1,6-己二醇,分子式为C6H14O2,相对分子质量为118.17,外观通常为白色固体,易溶于水、甲醇、丁醇、乙酸丁酯,微溶于乙醚。1,6-己二醇拥有两个位于碳链端点位置的羟基,具有较高的活性,与有机酸、异氰酸盐、酸酐反应可形成不同类型的衍生物。1,6-己二醇是一种新兴的精细化工原料,在紫外光固化涂料、聚氨酯、聚酯、增塑剂、农药、医药、染料等领域有着越来越广泛的应用,主要用于改善产品的机械强度,提高产品抗水解、耐热、耐化学药品腐蚀等性能。近年来,我国1,6-己二醇的消费量不断增长,2016年需求达到16.6 kt(包括1,5-戊二醇),但仍然主要依靠进口且呈逐年增长趋势。2012年进口量为9 kt,2016年进口量增加至10.0 kt。随着1,6-己二醇下游行业的发展以及我国1,6-己二醇应用领域的不断拓展,市场需求量不断增长,市场和发展空间非常广阔[1]。
本文主要对1,6-己二醇的生产工艺进行分类介绍,并提出有待进一步开展的工作。
该工艺是指己二酸不经过酯化而是直接加氢还原为己二醇的过程,工艺路线见图1。
图1 己二酸直接加氢制备己二醇的路线Fig.1 Route of producing hexanediol by direct hydrogenation of adipic acid.
直接加氢催化剂大都以Sn 和过渡金属元素(如Ru,Rh,Pd,Pt,W,Re,Ir 等)作为活性组分。
Mitsubishi Chemical 公司[2]发明了6%Ru-5%Sn-2%Pt 催化剂(载体为活性炭;其中的数值均为质量分数,下同),并以己二酸(8.5 g)、ε-己内酯(11.5 g)、水(30 g)为原料,于230 ℃、15 MPa 条件下反应3 h,采用直接加氢法制备了1,6-己二醇。用滴定法分析羧基含量,计算出己二酸的转化率为99.7%,1,6-己二醇产率为96.3%。该催化剂以Ru 和Sn 为活性组分,通过添加Pt 进一步提高了催化剂活性,具有较高的选择性并且催化剂稳定性较好。
旭化成株式会社[3-4]发明了一种由混合二元酸(己二酸生产过程中的副产品,含有丁二酸、戊二酸和己二酸等)制备1,4-丁二醇、1,5-戊二醇和1,6-己二醇混合物的方法。以混合二元酸为原料,在水、H2和催化剂5%Ru-3%Sn-5%Rh/活性炭存在下,于180 ℃、15 MPa 下加氢制备了二元醇混合物,1,4-丁二醇、1,5-戊二醇及1,6-己二醇的产率分别为75%,98%,96%。他们还提出了二元醇混合物的分离方法。这种由二元酸混合物直接加氢制备二元醇混合物的路线具有一定的实用性。
Rennovia 公司[5]发明了双金属负载型催化剂,其中3.9%Pt-0.7%W@SiO2型催化剂的效果最好。在催化剂用量40 mg、浓度为0.8 mol/L 的己二酸水溶液200 μL、压力4.6 MPa、温度120 ℃的条件下反应2.5 h,己二酸转化率为100%,1,6-己二醇产率为88%。中国石油化工股份有限公司等[6]发明一种可将己二酸直接加氢还原为1,6-己二醇的催化剂(活性组分包括Ru,Re,In,Ir 等,Ru 含量为0.01~0.1 g/mL,载体为活性炭)。在高压釜内依次加入100 g 己二酸、200 mL 水、2 mL 催化剂,分别通入氮气和H2各置换3 次,然后再通入H2升压至5 MPa,在180 ℃条件下反应5 h,1,6-己二醇产率为96%。Ru 的添加使得催化剂活性和1,6-己二醇产率均得到较为明显的提高。
Nagendra 等[7]利用1-丙基磷酸酐(T3P)-NaBH4体系将T3P 活化的羧酸直接加氢制备1,6-己二醇。先将烷基或芳基酸溶解于四氢呋喃中冷却至0 ℃,再加入二异丙基乙胺、50%(w)T3P 的乙酸乙酯溶液,混合搅拌5 min,然后保持温度不变,加入NaBH4,继续搅拌。反应结束后,蒸发溶剂,用乙酸乙酯进行萃取,有机物依次用10%(w)的Na2CO3溶液、水、饱和食盐水洗涤,蒸发溶剂得到粗产物。其中,己二酸直接加氢制备1,6-己二醇的产率为84%。该方法简单,产物易分离,在加入NaBH4之前不需要预过滤步骤,且产率较高。
该工艺主要分为两步。首先,己二酸发生酯化反应得到己二酸酯类衍生物(如己二酸二甲酯、己二酸二丁酯、己二酸二烷基酯等),然后己二酸酯类衍生物通过加氢还原得到己二醇,工艺路线见图2。该工艺的难点在于加氢催化剂的研制。
图2 己二酸经酯化、加氢制备己二醇的路线Fig.2 Route of preparing hexanediol by esterification and hydrogenation of adipic acid.
沈阳工业大学等[8]以己二酸为原料,经酯化和催化加氢制备1,6-己二醇。在酯化阶段,他们发明了一种酯化催化剂(活性组分为12-磷钨酸、12-硅钨酸、硝酸钯、氯化钌等,载体为活性炭)。在110 ℃、0.5 MPa 时,己二酸与甲醇在该催化剂作用下发生酯化反应得到己二酸二甲酯(酯含量大于99.5%,选择性大于99%,己二酸转化率大于99%)。在加氢阶段,他们提出了一种固体负载型加氢催化剂(活性组分为硝酸钯、氯铂酸钾、三氯化钌、七氧化二铼、高铼酸铵等,载体为Al2O3)。在210 ℃、2.5 MPa、H2流量2×104L/h的条件下,己二酸二甲酯经过催化加氢得到1,6-己二醇(其中,己二酸二甲酯的转化率和1,6-己二醇的选择性均大于99%),催化剂使用周期大于两年,从而使得该工艺成本较低。
程光剑[9]提出以己二酸为原料,经酯化、催化加氢制备1,6-己二醇。在酯化阶段,采用DNW型强酸树脂催化剂为酯化催化剂,在自行设计的反应装置上实现了连续酯化反应,己二酸转化率达98%以上。在加氢阶段,采用共沉淀法制备了DL 系列和CH 系列催化剂,通过筛选,发现CH-07 型催化剂效果最优。在210~230 ℃、4~8 MPa、氢酯摩尔比为150~300,己二酸二甲酯空速小于0.5 h-1的条件下,己二酸二甲酯的转化率高于98%,1,6-己二醇的选择性大于95%,在中试实验中CH-07 型催化剂的催化性能更好,己二酸二甲酯的转化率达99%以上,1,6-己二醇选择性达到96%以上。进一步制备了(5%~60%)CuO-(25%~60%)ZnO-(10%~30%)Al2O3催化剂[10-11],在150~250 ℃、2.5~10.0 MPa、氢酯摩尔比为50~350 条件下,加氢反应转化率大于99%,选择性大于96%,精馏后得到的1,6-己二醇的纯度为99.0%。随后,再次改进制备了主要成分及含量为CuO 37.2%(w),ZnO 53.7%(w),A12O38.9%(w)的催化剂[12],在温度225 ℃、压力6.0 MPa、氢酯摩尔比175、原料体积空速0.3 h-1的优化工艺条件下,己二酸二甲酯转化率为100.0%,1,6-己二醇选择性为97.9%。上述系列非贵金属加氢催化剂在氢酯比、操作压力等方面显示了一定的优势,具有较好的工业应用价值。
Yuan 等[13]研制了一种Cu-Zn-Al-500 型催化剂,在215 ℃、5.0 MPa 条件下,通过己二酸二甲酯加氢得到1,6-己二醇,己二酸二甲酯的转化率为99.2%,1,6-己二醇选择性为99.2%,其反应网络见图3。该催化剂主要由晶态CuO,ZnO 和非晶态Al2O3组成。其中,非晶态Al2O3为CuO 和ZnO晶体的分散提供了较大的比表面积,有助于介孔的形成。这种催化剂表面含有较多的Cu 组分,有利于提高催化剂活性,表面和亚表面的Cu/Zn 质量比对保持Cu-Zn-Al 催化剂的活性起着重要作用。随后,一些研究者对Cu-Zn-Al 催化剂的影响因素进行了研究[14-19]。梁吉虎等[14-15]得到己二酸二甲酯加氢制备1,6-己二醇的最优反应条件为:压力2.5 MPa,温度250 ℃,氢酯摩尔比150∶1,酯原料空速0.50 h-1,所制1,6-己二醇的产率达到96%以上。杨幸川等[16-17]得到的最优条件是压力27 MPa,温度280 ℃,反应时间5 h,以正丁醇为溶剂,催化剂用量为己二酸二甲酯质量的5%,此时己二酸二甲酯的转化率为94.05%,1,6-己二醇的选择性为74.88%。尚开龙等[18-19]研究得到的最优条件是Cu 质量分数为40%,n(Zn)∶n(Al)为2.7∶1,陈化时间2 h,焙烧温度450 ℃,己二酸二甲酯的转化率和1,6-己二醇的产率分别为98.46%,72.99%。魏晓霞等[20]则对中国石油化工股份有限公司抚顺石油化工研究院自行开发的DNW 型耐温树脂酯化催化剂和FHE-1 型加氢催化剂催化己二酸酯化、加氢制备1,6-己二醇的工艺进行了研究,得到的最优条件是:酯化温度85 ℃,加氢反应温度210~220 ℃,加氢反应压力4.0~8.0 MPa,己二酸二甲酯空速0.2~0.4 h-1,H2与己二酸二甲酯摩尔比大于310∶1。在此条件下,己二酸转化率为100%,己二酸二甲酯转化率可达98%以上,1,6-己二醇的选择性大于90%。
王东辉等[21]对己二酸二甲酯的加氢催化剂进行了改性。将脱水至一定程度的粉体湿料、黏结剂(硅溶胶,质量分数为0.30%)、黏合剂(羟丙基甲基纤维素,质量分数为8.00%)、增强剂(短切玻璃纤维,质量分数为0.11%)、适量水和助剂按一定比例混合,进行捏合、挤条、切粒、干燥、焙烧,得到 CuO-NiO-Mo2O3/Al2O3催化剂。然后,在280 ℃、8 MPa、H2流量4 L/h 条件下,将催化剂还原活化4 h。催化加氢的反应条件为:220 ℃,8 MPa,液态空速0.4 h-1,氢酯摩尔比200,在此条件下制备的己二酸二甲酯的转化率达到99%以上,1,6-己二醇选择性达到97%以上。
烟台万华聚氨酯股份有限公司[22]公开了一种己二酸二甲酯气相加氢合成1,6-己二醇的方法,并提出了相应的加氢催化剂(50.9%CuO-10.5%Al2O3-12.9%MnO-25.7%SiO2)。该催化剂经还原活化后,在微型反应器中于210 ℃、6.00 MPa、酯流量0.027 mL/min、H2流量730 mL/min的条件下进行活性测试,结果表明,己二酸二甲酯的转化率为93%,1,6-己二醇产率为82%,1,6-己二醇选择性为88%。他们通过微波辐射法将Cu及其他金属化合物负载在介孔分子筛上。由于微波辐射加热速度快且平稳,可以在较短的时间内使活性物质均匀地负载在载体上,从而改善了催化剂的 物理性能和催化性能。
图3 己二酸二甲酯加氢制备1,6-己二醇的反应网络Fig.3 Reaction network for preparing 1, 6-hexanediol by hydrogenation of dimethyl adipate.
Jiang 等[23-24]发 明 了Ru-Sn-Co/Al2O3加 氢催化剂。该催化剂还原活化2 h 后,在220 ℃、5.0 MPa 条件下将己二酸二甲酯催化加氢10 h 得到1,6-己二醇。己二酸二甲酯转化率为99.5%,1,6-己二醇选择性为99.5%。与复合氧化物催化剂的复杂制备工艺相比,虽然该加氢催化剂为贵金属催化剂,但制备工艺更简单。
Huels Aktsengesellschaft[25]发明了一种铜铬系列加氢催化剂(44.9%CuO-45.8%Cr2O3-9.1%BaO-0.2% (Al2O3+SiO2+SrO)),在182 ℃、30.0 MPa 条件下将己二酸二丁酯催化加氢制备1,6-己二醇,产率为92.98%。该催化剂较好地解决了酯类加氢反应条件苛刻、催化剂活性易下降等问题。李存等[26]也对己二酸二丁酯加氢制备1,6-己二醇进行了研究,他们采用共沉淀法制备了Cu 基催化剂(主要成分为CuO,ZnO,Al2O3),虽然1,6-己二醇的产率仅为28.72%,但是他们使用了更廉价的反应原料和催化剂。
上海戊正工程技术有限公司[27-28]将γ-Al2O3在80~120 ℃条件下干燥后,与铜镍锌可溶性盐溶液混合,通过浸渍法制备了WZD09 型催化剂(12.77%Cu-4.08%Ni-2.21%Zn@γ-Al2O3)。他们采用微型固定床反应器,在210 ℃、20 MPa、空速0.3 kg/(L·h)、氢酯比100 的条件下将己二酸二烷基酯转化为1,6-己二醇。己二酸二烷酯的转化率为99.5%,1,6-己二醇的选择性为98.5%。该催化剂制备方法较为简单,条件温和,使用前无需活化。
德国巴斯夫股份公司的研究人员发明了一系列以二元酸溶液酯化所得的C6酯混合物为原料进行催化加氢制备1,6-己二醇的工艺及催化剂。其中,巴斯夫股份公司[29-33]提出加氢催化剂为Cu基催化剂时,以60%CuO-30%Al2O3-10%Mn2O3为催化剂,在220 ℃、2.2 MPa 条件下反应效果最好,酯转化率达99.5%,1,6-己二醇选择性高于99%。上述发明的重点在于1,6-己二醇的提纯方法,在蒸馏前将酯类混合物进行加氢可以有效地减少1,4-环己二醇的含量且不损失1,6-己二醇的产率,可以得到纯度大于99%的1,6-己二醇。巴斯夫股份公司[34-35]改进了1,6-己二醇的制备方法,以己二酸酯和6-羟基己酸酯为原料,使用主要含Cu,Mn,Al 的无铬催化剂,在180 ℃、4.5 MPa、氢酯摩尔比280∶1,空速0.1 kg/(L·h)条件下进行加氢反应。当采用纯己二酸二甲酯为原料时,己二酸二甲酯的转化率为100%,1,6-己二醇的选择性为98.1%。该方法实现了酯类混合物的气相加氢,且酯转化率和醇选择性高,催化剂具有较长的寿命。
Celanese 公司[36]则将环己烷氧化过程产生的混合物通过酯化、加氢两个步骤制备了1,6-己二醇。随后,一些研究者也对此进行研究,先将混合物进行萃取分离,然后在一定的温度、压力、酯化催化剂或者无催化剂条件下进行酯化反应,再将酯化产物进行催化加氢,最后精制可得到纯度超过99%的1,6-己二醇[37-42]。其中,巴斯夫股份公司[40-42]发明的加氢催化剂为70%CuO-25%ZnO-5%Al2O3。在220 ℃、22 MPa 条件下,酯转化率为99.5%,1,6-己二醇选择性超过99%,该工艺的酯转化率和醇选择性都较高,而且是以环己烷氧化制备环己酮/环己醇过程中产生的副产物为原料。
生物基原料制备1,6-己二醇是近年来兴起的工艺,主要采用可再生资源为原料制备1,6-己二醇,具有环境友好的特点,因此有很好的应用前景。
郸城财鑫糖业有限责任公司[43]提出可在镍/钴催化剂作用下,将山梨醇水溶液(山梨醇质量分数为30%~50%,pH控制为11~13)在180~230 ℃、8~11 MPa 条件下进行加氢裂解得到1,6-己二醇和其他产物。裂解混合物经过脱水、分离精制后可得到单一的1,6-己二醇产品。
纳幕尔杜邦公司[44-46]开发了用左旋葡萄糖酮制备1,6-己二醇的方法。将Pt/W/TiO2(Pt 负载量占催化剂总质量的4%,Pt 与W 的摩尔比为1∶1)催化剂、底物左旋葡萄糖酮置于反应釜中,先在60 ℃、5.52 MPa 条件下反应2 h,然后将温度提高至180 ℃再反应4 h,1,6-己二醇的产率为62%。
Hydrocarbon Research 公司[47]提出用5-羟甲基糠醛制备1,6-己二醇。首先将纸张、木材、秸秆等在酸溶液中分解,然后进一步水解得到5-羟甲基糠醛;再将5-羟甲基糠醛和H2在Raney-Ni(或铬)催化剂作用下,在100~200 ℃下反应得到2,5-二羟甲基四氢呋喃;最后,使用铬酸铜催化剂在固定床反应器中将2,5-二羟甲基四氢呋喃于200~350 ℃、6.89~137.89 MPa 下进行氢解得到1,6-己二醇。
NL Organisatie Voor Wetenschappelijk Onderzoek[48]以Raney-Ni 为催化剂,甲醇为溶剂,将5-羟甲基糠醛与H2在100 ℃、9 MPa 条件下反应14 h,得到产率为99%的2,5-二羟甲基四氢呋喃。然后以正丙醇为溶剂,CuCr 为催化剂,在260 ℃、10 MPa 条件下将2,5-二羟甲基四氢呋喃与H2反应15 h,1,6-己二醇产率为22%。Tuteja 等[49]采用Pd/ZrP 催化剂,以5-羟甲基糠醛为原料、甲酸为氢源,在常压、140 ℃条件下反应21 h,1,6-己二醇收率达42.5%。Rennovia 公司[50]在H2和催化剂3.9%Pt&1.3%Mo@Silica Cariact Q-10 存 在 下,于160 ℃、4.62 MPa 下反应5 h,将5-羟甲基糠醛还原成1,6-己二醇。5-羟甲基糠醛转化率为87%,1,6-己二醇产率为14%,1,6-己二醇选择性为16%。Xiao 等[51]在装有Pd/SiO2+Ir-ReOx/SiO2复合催化剂的固定床反应器中,在100 ℃、7 MPa、四氢呋喃水溶液(水与四氢呋喃的体积比为2∶3)为溶剂的条件下,将5-羟甲基糠醛催化加氢得到1,6-己二醇,1,6-己二醇产率为57.8%。5-羟甲基糠醛制备1,6-己二醇反应网络见图4。
一些研究者直接以2,5-二羟甲基四氢呋喃为原料制备1,6-己二醇。Merck 公司[52]以亚铬酸铜为催化剂,甲醇为溶剂,在300 ℃、37.92 MPa条件下将2,5-二羟甲基四氢呋喃氢化11 h 制备1,6-己二醇,分离后产率为40.6%,重结晶收率为50.0%。Buntara 等[53]以Rh-Re/SiO2为催化剂,在压力1~8 MPa、温度120 ℃、水和酸催化剂存在的条件下,用2,5-二羟甲基四氢呋喃氢化20 h 制备1,6-己二醇,2,5-二羟甲基四氢呋喃转化率达100%,1,6-己二醇的选择性达86%。
图4 5-羟甲基糠醛制备1,6-己二醇的反应网络Fig.4 Reaction network for preparing 1, 6-hexanediol from 5-hydroxymethyl furfural.
还有的研究者以1,2,6-己三醇为原料通过加氢还原制备1,6-己二醇。Chia 等[54]以Rh-ReOx/C 为催化剂,使1,2,6-己三醇在120 ℃、3.4 MPa条件下反应4 h 制备1,6-己二醇。虽然1,2,6-己三醇转化率只有8.1%,但是1,6-己二醇的选择性高达99.9%。Buntara 等[55]以1,2,6-己三醇为原料,Rh-ReOx@SiO2为催化剂,在180 ℃、8 MPa 条件下反应20 h,1,6-己二醇选择性为73%。Rennovia公司[50]还指出,在含有Pt 的催化剂(ZrO2)存在下,于160 ℃、4.62 MPa 下反应2.5 h,可将1,2,6-己三醇转化为1,6-己二醇,1,2,6-己三醇转化率为91%,1,6-己二醇产率为61%、选择性为68%。
2017年,美国Rennovia 公司开发的糖制1,6-己二醇工艺中试成功[56]。该工艺采用专有的催化剂技术,有望简化1,6-己二醇的生产工艺。
拜耳股份公司[57]发明了一种由丙烯制备1,6-己二醇的方法。该方法包括3 个步骤:首先是丙烯通入含有甲醛、磷酸氢二钠、磷酸二氢钠的甲苯溶液中,在压力为2.2~15.0 MPa 条件下反应12 h 得到3-丁烯-1-醇,选择性为97%;然后在氩气保护下添加1,3-二苯基-4,5-二氢咪唑-2-亚基-三环己基膦-苄基钌-(Ⅳ)-二氯,在22 ℃、5.6 MPa 条件下反应18 h 得到3-己烯-1,6-二醇,产率为80%;最后加入乙醇和5%Pd/C 催化剂,在20 ℃、0.1 MPa 条件下反应1 h 得到1,6-己二醇,产率为90%。该方法虽然反应温度较低,但是流程复杂。
巴斯夫股份公司[58]发明了一种由1,3-丁二烯、CO、H2制备1,6-己二醇的方法。将1,3-丁二烯与CO、H2(V(CO)∶V(H2)=1∶1)在120 ℃、28.0 MPa、甲醇为溶剂、三苯基膦改性铑化合物催化剂存在下进行第一次甲酰化反应,并分离去除铑化合物。将得到的3-戊烯二甲缩醛先与1,3-丙二醇、强酸性离子交换剂在60 ℃、0.016~0.017 MPa 条件下反应2 h,去除离子交换剂后将所剩反应混合物加入到高压釜中,然后以苯为溶剂、八羰基二钴和9-十二烷基-9-磷杂双环壬烷为催化剂,在170 ℃、8.11~11.15 MPa 条件下进行第二次氢甲酰化反应。将得到的产物在甲醇、水、Raney-Ni 存在下,在100 ℃、18.24 MPa 条件下氢化,然后在140 ℃、28.37 MPa 条件下继续氢化得到最终产物1,6-己二醇(产率为82%)。巴斯夫股份公司[58]还提到,采用羰基钴作为氢甲酰化催化剂时,二烯烃只有一个双键发生甲酰化反应,另一个双键发生加氢反应,当采用三苯基膦改性的铑化合物作为催化剂时,可以得到两个双键都发生氢甲酰化的产物。
Mormul 等[59]以丁二烯为原料,加入磷配体(6,6′-[(3,3′-二叔丁基-5,5′-二甲氧基-1,1′-二苯基-2,2′-二基)双(氧)]双(二苯并[d,f][1,3,2]二噁磷杂庚英)、Rh 催化剂(Rh 与丁二烯的摩尔比为1∶99)、乙二醇、含有甲苯的三氟乙酸溶液,在80 ℃、3.0 MPa 条件下反应2 h后升至120 ℃再反应18 h 得到1,4-双(1,3-二氧戊环-2-烯)丁烷,然后在Raney-Ni 催化剂存在下,在130 ℃、5.0 MPa 条件下搅拌反应16 h,1,6-己二醇的产率为52%。
联合碳化化学品及塑料技术公司[60-62]发明了一种以4-戊烯醛/4-戊烯醇制备1,6-己二醇的方法。在高压反应釜中,加入二羰基乙酰基丙酮化铑(Ⅰ)等催化剂,以乙醇为溶剂及助剂,将4-戊烯醛/4-戊烯醇和H2/CO(V(CO)∶V(H2)=1∶1)在120 ℃、2.07 MPa 条件下反应2~4 h,1,6-己二醇产率为69%。
White 等[63]发明了一种环己烯氧化、氢化制备1,6-己二醇的方法。将环己烯在-78~20 ℃、醇为溶剂的条件下与臭氧发生氧化反应得到6-烷氧基-6-超氧化氢基-己醛,该产物先在0~15 ℃、0.10~0.34 MPa、Pt 为催化剂的条件下发生初步氢化反应,然后在35~50 ℃、0.34~1.03 MPa、Pt 为催化剂条件下发生进一步氢化反应(1~4 h),1,6-己二醇产率为95%。
巴斯夫股份公司[64]通过环氧丁烯在置换催化剂RuCl2PCy3(Cy 为环己基)存在下,在温度为23 ℃、氩气保护、一定压力(至少能使环氧丁烯以液体形式存在)条件下反应23 h 脱去乙烯得到双环氧己烯Ia 和Ib(见图5),转化率为3.5%,双环氧己烯Ia 和Ib 的总选择性为15%。双环氧己烯Ia 和Ib 在还原催化剂(如Pd/C,Pt/C,Re/C,Cu/C,Cu/SiO2,Ni/C 等)存在下,于40~50 MPa、20~150 ℃下与H2反应1~2 h,全部转化为1,6-己二醇。
图5 环氧丁烯制备1,6-己二醇反应网络Fig.5 Reaction network for preparing 1, 6-hexanediol from epoxy butylene.EPB:3, 4-epoxy-1-butene.
硼氢化-氧化是烯烃制备伯醇的经典反应,多年来一直受到研究者的青睐。二烯烃同样可以通过硼氢化-氧化制备二元醇。Brown 课题组[65]以四氢呋喃为溶剂,冰浴条件下(控制温度为0~5 ℃)将1,5-己二烯与乙硼烷反应一定时间,然后将产物加入到氢氧化钠与双氧水的混合溶液中,于室温条件下水解1 h,经过萃取、干燥得到1,6-己二醇,己二醇总产率为85%(1,6-己二醇、1,5-己二醇、2,5-己二醇质量比为69∶22∶9)。随后,他们在Shchegoleva 等[66]以及自己工作的基础上,将1,5-己二烯与一氯硼烷在0 ℃、乙醚为溶剂条件下反应2 h,得到产率为92.6%的氯-硼杂环有机物,然后用碱性双氧水水解得到己二醇,其中,1,6-己二醇含量为91.3%(w),1,5-己二醇含量为7.4%(w),2,5-己二醇含量为1.3%(w)[67]。Saegebarth[68]将乙硼烷与1,5-己二烯按照摩尔比为3∶1 混合,在25 ℃下反应得到1,6-双(1-硼杂环庚烷)-己烷(总收率为82%),再经过碱性水解全部转化为1,6-己二醇。
如何实现高效催化合成与环境友好相结合是研究者面临的难题,特别是具有工业应用价值的催化剂研制是关键环节。目前,工业化生产1,6-己二醇的工艺大都是采用1,6-己二酸酯化再加氢的方法,这种工艺可以有效地提高产品的纯度,降低副产品的生成,而且三废较少;但是在加氢过程中氢酯摩尔比较大,能耗较高,需要在高压条件下进行,过程经济性有待进一步提高。
以生物基原料代替传统的石油基原料制备1,6-己二醇具有巨大的发展潜力。目前虽然生物基原料路线的报道较多,但规模化工业应用还有待深入研究。此外,以烯烃为原料制备1,6-己二醇颇为值得探索。如尝试以1,5-己二烯为原料,用光催化方法直接水合制备1,6-己二醇,此方法会极大降低能耗,并且可以最大程度地降低对环境的污染;但是,目前这方面的光催化剂还未见报道,相关工作有待开展。