pVAX—eNOS转染急性心肌梗死患者早期内皮祖细胞及对其活性的影响

2019-05-28 11:31黄晓燕王沙沈鑫
中国医药导报 2019年11期
关键词:急性心肌梗死

黄晓燕 王沙 沈鑫

[摘要] 目的 探討利用pVAX1介导一氧化氮合酶(eNOS)基因体外转染急性心肌梗死患者(AMI)外周血早期内皮祖细胞(EPCs)的可行性。 方法 选择陕西省人民医院2017年12月~2018年6月因心脏病发病入院且经冠脉造影检查确诊为AMI患者30例。Ficoll密度梯度离心法分离患者空腹静脉外周血单个核细胞诱导培养至EPCs并鉴定,纯化pVAX-eNOS质粒。将EPCs分为3组,eNOS转染组:用阳离子聚合物JetPEITM体外转染eNOS基因至EPCs。转染后24 h,硝酸还原酶法检测EPCs中一氧化氮(NO)的含量,ELISA和Western blot检测EPCs分泌eNOS及血管内皮生长因子(VEGF)的能力;采用Wst-1法检测EPCs增殖情况,用Transwell小室检测各组EPCs迁移及黏附功能;空质粒转染组:只转染pVAX空质粒至EPCs中;对照组:不转染EPCs。 结果 成功转染pVAX-eNOS基因至AMI患者早期EPCs,转染后24 h,与空质粒转染组及对照组比较,NO含量明显升高(P < 0.01),eNOS表达量明显增加(P < 0.01),分泌VEGF的能力明显增强(P < 0.01);EPCs增殖、迁移及黏附能力明显增加(P < 0.01),空质粒转染组与对照组比较,差异无统计学意义(P > 0.05)。 结论 阳离子聚合物JetPEITM可成功介导pVAX-eNOS有效转染AMI患者早期EPCs,并有效增强EPCs增殖、迁移、黏附及分泌功能,为AMI患者进行自体EPCs移植改善心肌缺血奠定了基础。

[关键词] pVAX-eNOS;内皮祖细胞;转染;急性心肌梗死

[中图分类号] R542 [文献标识码] A [文章编号] 1673-7210(2019)04(b)-0009-05

Effect of pVAX-eNOS transfection on the early endothelial progenitor cells from the patients with acute myocardial infarction

HUANG Xiaoyan1 WANG Sha2 SHEN Xin3 SUN Jingying1 DONG Xianghui4 JIN Zhankui4 SONG Baoguo2 LIANG Daoyan1 XU Cuixiang5

1.Department of Labratory Center, Shaanxi Provincial People′s Hospital, Shaanxi Province, Xi′an 710068, China; 2.Department of Cardial Surgery, Shaanxi Provincial People′s Hospital, Shaanxi Province, Xi′an 710068, China; 3.Department of Obstetric, Shaanxi Provincial People′s Hospital Maternity Hospital, Shaanxi Province, Xi′an 710068, China; 4.Department of Clinical Center, Shaanxi Provincial People′s Hospital, Shaanxi Province, Xi′an 710068, China; 5.Visitthe Cencer, Shaanxi Provincial People′s Hospital, Shaanxi Province, Xi′an 710068, China

[Abstract] Objective To investigate the feasibility of transfection of early endothelial progenitor cells (EPCs) in peripheral blood of patients with acute myocardial infarction (AMI) in vitro using pvax1-mediated nitric oxide synthase (eNOS) gene. Methods From December 2017 to June 2018, 30 cases of AMI patients admitted to Shaanxi Provincial People′s Hospital due to heart disease and diagnosed by coronary angiography were selected. The Ficoll density gradient centrifugation method was used to isolate mononuclear cells in the peripheral blood of patients with fasting veins and induce them to culture into EPCs for identification and purification of pvax-enos plasmids. EPCs were divided into three groups: eNOS transfection group, cationic polymer JetPEITM was used to transfect eNOS gene into EPCs in vitro. After transfection for 24 h, nitric oxide (NO) content in EPCs was detected by nitrate reductase method, and the ability of eNOS and vascular endothelial growth factor (VEGF) secretion by EPCs was detected by ELISA and Western blot. The proliferation of EPCs was detected by Wst-1 method, and the migration and adhesion of EPCs in each group were detected by Transwell chamber. Empty plasmid transfection group, only pVAX empty plasmid was transfected into EPCs. Control group, no transfection of EPCs. Results Pvax-enos gene was successfully transfected into early EPCs of AMI patients, and 24 h after transfection, the content of NO was significantly increased compared with the blank plasmid transfection group and the control group (P < 0.01), The expression of eNOS was significantly increased (P < 0.01), and the ability to secrete VEGF was significantly increased (P < 0.01). The ability of proliferation, migration and adhesion of EPCs was significantly increased (P < 0.01), and there was no significant difference between the empty plasmid transfection group and the control group (P > 0.05). Conclusion Cationic polymer JetPEITM can successfully mediate the effective transfection of pvax-enos into early EPCs in AMI patients, and effectively enhance the proliferation, migration, adhesion and secretion of EPCs, which lays a foundation for the improvement of myocardial ischemia in AMI patients by autologous EPCs transplantation.

[Key words] pVAX- endothelialnitric oxide synthase; Endothelial progenitor cells; Transfection; Acute myocardial infarction

内皮损伤是急性心肌梗死(acute myocardial infarction,AMI)的始动环节[1]。因此,心肌梗死部位血管新生、内皮修复和心肌再生是改善AMI预后的关键[2]。内皮祖细胞(endothelial progenitor cells,EPCs)是成熟内皮细胞的前体细胞,具有新生血管和新生皮化作用,但其生物学特征及鉴定方法仍存争议。目前,EPCs公认的表面标记有CD133+、CD34+及血管内皮细胞生长因子受体2(VEGFR-2)[3]。有研究[4-5]表明,外周血中循环EPCs水平与冠脉病变程度及狭窄的百分比息息相关,并且EPCs及其分泌的细胞因子参与血管形成和组织修复,增强局部缺血心肌的恢复[6-8],促进心肌缺血区域的侧支循环和血管新生。目前,治疗性血管生成用于治疗AMI有着非常大的潜在临床应用价值[9]。

然而,AMI患者体内由于病理微环境及多种冠心病危险因素严重影响EPCs数量及功能[10-12],这些限制了EPCs自体移植的临床效果。EPCs在分化成为内皮细胞时可释放一氧化氮(NO),内皮型一氧化氮合酶(endothelialnitric oxide synthase,eNOS)是一氧化氮合成的关键酶。有研究[13]证实eNOS体外转染EPCs可增殖EPCs,修复受损血管。但所用载体大多为重组腺病毒,无法进行临床治疗。pVAX质粒是由美国食品和药品管理委员会(FDA)推荐的唯一可以应用于人体实验的载体质粒[14]。本研究将构建的pVAX1-eNOS质粒转染至AMI患者早期EPCs中,检测pVAX1介导的eNOS基因是否能有限转染和成功表达,并以观察其效果及可能的作用机制,为AMI患者自体EPCs移植改善血管功能奠定基础。

1 材料与方法

1.1 材料

pVAX1-eNOS质粒由渥太华总医院Duncan J. Stewart教授所惠赠。AMI患者外周血(经冠脉造影诊断的AMI的患者);人外周血淋巴细胞分离液(购自北京索莱宝公司);人纤连蛋白(购自源叶公司);胎牛血清(购自Hyclone公司);EMB-2血管内皮细胞生长培养试剂盒(购自美国Lonza公司);抗人CD34-FITC抗体、抗人CD133-FITC抗体、抗人VEGFR2-FITC抗体(购自美国ebioscience公司);兔抗人eNOS mAb、兔抗人VEGF mAb(購自ABcam公司)、HRP标记的山羊抗兔二抗和HRP标记的兔抗小鼠二抗、小鼠抗β-actin mAb、细胞消化酶液(购自依科生物科技有限公司);eNOS ELISA检测试剂盒、NO检测试剂盒、血管内皮细胞生长因子(VEGF)ELISA检测试剂盒(购自Sigma公司);Wst-1细胞增殖检测试剂盒(购自上海贝博有限公司)、JetPEI体外转染试剂盒(购自法国Polyplus-transfection公司)。

1.2 方法

1.2.1 EPCs分离、培养与鉴定 选择陕西省人民医院2017年12月~2018年6月因心脏病发病入院并经冠脉造影检查确诊为AMI患者30例,其中男14例,女16例。无菌采集患者外周血,所有患者均符合WHO诊断标准,且均签署知情同意书,每份20 mL。Ficoll密度梯度离心分离单个核细胞。以1.5×106个/mL分别接种于人纤连蛋白包被的25 cm2的塑料培养瓶中,每瓶4 mL,置含20%胎牛血清的EBM-2的培养基中培养;置5% CO2持续通气、湿度95%、37℃恒温培养箱中培养48 h后首次换液;每2天换液1次,第6天挑选长梭形细胞进行流式细胞鉴定[15]。将FITC-CD34、FITC-VEGFR2(KDR)、FITC-CD133抗体分别加入收集的贴壁细胞中,于4℃避光孵育30 min,磷酸盐缓冲液(PBS)洗涤后,制成单细胞悬液,取1×105个细胞经280 μL PBS悬浮后,分装成7管用流式细胞仪检测,其中一管不加抗体作为空白对照组。

1.2.2 实验分组及处理 EPCs培养至第6天,EPCs 80%~90%融合时用0.25%胰酶消化,以1×105/孔种植于六孔板,细胞培养液EBM-2 2 mL,置于37℃、5% CO2培养箱内孵育18~24 h,细胞密度为40%~50%。此时,将EPCs分为3组,eNOS转染组:按照JetPEI体外转染说明书将pVAX-eNOS转染至EPCs中;空质粒转染组:按以上步骤转染pVAX至EPCs中;对照组:不转染EPCs。各组EPCs在培养24 h后进行以下检测。

1.2.3 各组EPCs中NO含量和eNOS表达量的测定 收集各组EPCs细胞培养上清液,用硝酸还原酶法测NO的含量,用人eNOS酶联免疫吸附法(ELISA)检测试剂盒检测各组eNOS含量,严格按照试剂盒说明书操作;用Western blot法检测各组eNOS蛋白表达水平。

1.2.4 各组EPC细胞上清液中血管内皮生长因子(VEGF)分泌量检测 采用ELISA试剂盒检测各组上清液中VEGF的表达情况;用Western blot法验证各组VEGF蛋白表达水平。

1.2.5 Wst-1检测各组EPCs增殖实验 将各组100 μL EPCs分别以5×104/孔的密度种植于96孔培养板中,每组设5个复孔,依据Wst-1检测细胞增殖试剂盒说明,在酶联免疫检测仪上490 nm处波长比色,以EBM-2培养基调零,测定各孔平均OD值,检测各组EPCs增殖情况。

1.2.6 各组EPCs迁移能力测定 各组EPCs,用0.25%胰酶消化后,制成细胞悬液,2×105/孔各组EPCs加到Transwell小室内培养24 h。刮去滤膜上面未移动的细胞,用多聚甲醛溶液固定Giemsa染色滤膜的下室面。计数5个随机200倍视野中迁移细胞的数量。

1.2.7 各组EPCs黏附能力测定 各组EPCs,用0.25%胰酶消化后,制成细胞悬液,以5×104/孔接种于96孔板,37℃、5% CO2培养箱内孵育30 min,洗去未贴壁细胞,倒置显微镜下分别随机选取5个视野(200×),计数每组黏附细胞数。

1.2.8统计学方法 采用SPSS 21.0统计软件对数据进行分析,计量资料采用均数±标准差(x±s)表示,组间比较采用t检验,以P < 0.05为差异有统计学意义。

2 结果

2.1 AMI患者早期EPCs培养过程中形态变化及鉴定

原代分离出的AMI患者外周血单个核细胞体积偏小,大多呈圆形,经EBM-2完全培养基培养至第2天,细胞开始贴壁,呈条索状、纺锤状,集落样生长,第3天细胞逐渐变大,第6天呈现典型早期内皮祖细胞形态,非克隆式、分散生长的长梭形细胞。见图1A~C,封四。用FITC-CD34、FITC-CD133、FITC-VEGFR2(KDR)抗体进行流式细胞鉴定即为EPCs。其中,细胞表面分子CD34占82.72%,CD133占15.37%,VEGFR2占45.50%。见图1D~F,封四。

2.2 pVAX-eNOS转染对AMI患者EPCs分泌NO、eNOS及VEGF的影响

pVAX-eNOS转染AMI患者EPCs 3 h,培养24 h后,用NO硝酸还原酶检测各组NO含量,如图2A所示,eNOS转染组NO含量均明显高于空质粒转染组和对照组(P < 0.01);用ELISA检测试剂盒检测各组eNOS和VEGF表达量,结果如圖2B~C所示,eNOS转染组eNOS和VEGF表达量均明显高于空质粒转染组和对照组(P < 0.01);用Western blot检测各组eNOS和VEGF蛋白表达水平,结果如图2D所示,eNOS和VEGF转染组条带亮度明显比空质粒转染组和对照组增强;通过灰度分析可以看出,eNOS转染组eNOS和VEGF蛋白表达水平均明显高于空质粒转染组和对照组(P < 0.01)(图2E~F)。说明pVAX-eNOS转染AMI患者EPCs后,可增强EPCs分泌NO、eNOS及VEGF的功能。空质粒转染组与对照组比较,差异均无统计学意义(P > 0.05),见图2。

2.3 pVAX-eNOS转染对AMI患者EPCs增殖、迁移、黏附功能的影响

pVAX-eNOS转染AMI患者EPCs 3 h,培养24 h后,用Wst-1试剂检测各组EPCs增殖情况以及在Transwell小室检测各组EPCs迁移及黏附功能,eNOS转染组增殖、迁移及黏附能力明显高于空质粒转染组和对照组(P < 0.01);空质粒转染组与对照组比较,差异无统计学意义(P > 0.05)。见图3。

3 讨论

冠心病逐渐发展导致的AMI是世界上首要的发病和死亡原因[16]。AMI危险因素(如高血压、高胆固醇血症、吸烟、糖尿病等)大都能降低循环中EPCs数量,抑制EPCs修复内皮层的潜能[17-18],使基于EPCs的细胞治疗手段在临床中的应用受限。但是,异体输注健康人捐献的EPCs要面临免疫排斥问题,因此经过功能修饰(如促进动员、归巢、迁移)等自体EPCs移植治疗心血管疾病有更广阔的应用前景。内皮细胞中的eNOS可生成NO,其扩散到邻近内皮的血管平滑肌细胞中,起到血管舒张作用[19]。有研究[20-21]显示,AMI患者体内eNOS减少会造成EPC功能障碍,而过表达eNOS可提高EPCs的再生、迁移成血管能力,阻止AMI进一步恶化。因此,eNOS体外修饰自体EPCs成为增殖EPCs、修复受损血管又一新途径。

本研究首先采用体外Ficoll密度梯度离心法获取AMI患者外周血单个核细胞,再通过多种细胞因子诱导其分化得到EPCs并鉴定,验证了其为靶标细胞EPCs,证实此方法可行。然后通过pVAX-1作为载体,将eNOS成功转染至AMI患者早期EPCs中,结果发现,eNOS转染AMI患者EPCs后,其分泌NO、eNOS、VEGF的能力明显增强,这和最新的研究[22]结果一致。本实验中eNOS转染EPCs成功后,转染组细胞中分泌eNOS的量大幅度提高,eNOS通过不同步骤将细胞内L-精氨酸转化为NO,致使eNOS转染组NO分泌明显高于其他组。再者,eNOS磷酸化是血管结构的主要决定因素,通过eNOS磷酸化介导NO分泌,促进内皮细胞血管生成和迁移[23]。这也解释了转染组EPCs迁移及黏附能力高的原因。因此,eNOS和NO激活及分泌增多在内皮功能障碍的治疗中是重要的。另外,转染组细胞分泌VEGF的能力较其他组也明显增强(P < 0.01),VEGF可结合内皮细胞上特异性VEGF受体(VEGFR),引起VEGFR细胞内特定酪氨酸残基的磷酸化,从而完成VEGF相应的促增殖作用[24]。这也解释了转染组EPCs增殖能力高的原因。另外,VEGF可诱导骨髓源性的EPCs动员到外周血循环中,促进受损血管的新生[25]。因此本研究推测EPCs的旁分泌作用在抑制宿主心肌细胞凋亡从而改善心功能方面发挥了一定作用,而eNOS转染进一步增强了其旁分泌功能并促进新生血管形成。

本研究中eNOS转染组EPCs增殖、迁移及黏附能力明显高于空质粒转染组和对照组(P < 0.01),而内皮细胞的增殖、迁移和黏附能力是其血管新生能力的基础。这样使基因转染EPCs相对于单纯EPCs在缺血性血管疾病方面具有了显著的优势。但本实验仅研究了pVAX-eNOS转染AMI患者早期EPCs,转染其晚期EPCs功效及机制有待进一步研究。

综上所述,本研究通过检测AMI患者EPCs中eNOS蛋白的表达证实了pVAX-eNOS转染成功。而转染后的AMI患者EPCs的增殖、迁移、黏附能力以及分泌NO、eNOS和VEGF的能力明显增强,这为下一步进行AMI患者自体EPCs移植、改善心肌缺血奠定了基础,也为人类缺血性疾病进行细胞治疗提供了依据。

[參考文献]

[1] Simard T,Jung RG,Motazedian P,et al. Progenitor cells for arterial repair:incremental advancements towards therapeutic reality [J]. Stem Cells Int,2017(2017):8270498.

[2] Sun YY,Bai WW,Wang B,et al. Period 2 is essential to maintainearly endothelial progenitor cell function in vitro and angiogenesis after myocardial infarction in mice [J]. J Cell Mol Med,2014,18(5)907-918.

[3] Ashara T,Murohara T,Sullivan A,et al. Isolation of putative progenitor endothelial cells for angiogenesis [J]. Science,1997,275(5302):964-967.

[4] Santas-Alvarez M,Rodino-Janeiro BK,Paradela-Dobarro B,et al. Endothelial progenitor cells mobilisation after percutaneous coronary intervention:a pilot study [J]. Br J Biomed Sci,2016,73(4):193-200.

[5] 耿海华,刘继东.冠心病患者循环内皮祖细胞与冠脉病变轻重程度的临床分析[J].细胞与分子免疫学杂志,2010, 26(12):1250-1251.

[6] Yadlapati M,Biguetti C,Cavalla F,et al. Characterization of a vascμlar endothelial growth factor-loaded bioresorbable delivery system for pμlp regeneration [J]. J Endod,2017, 43(1):77-83.

[7] 夏鑫,吴明华.血管相关内皮祖细胞标志物研究[J].脑与神经疾病杂志,2018,26(1):65-66.

[8] Sen S,McDonald SP,Coates FT,et al. Endothelial progenitor cells:novelbiomarker and promising cell therapy for cardiovascular disease [J]. Clin Sci(Lond),2011,120(7):263-283.

[9] Annex BH. Therapeutic angiogenesis for critical limb ischaemia [J]. Nat Rev Cardiol,2013,10,(7):387-396.

[10] Aicher A,Brenner W,Zuhayra M,et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling [J]. Circμlation,2003,29(107):2134-2139.

[11] Bakogiannis C,Tousoulis D,Androulakis E,et al. Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes [J]. Curr Med Chem,2012,19(16):2597-2604.

[12] Kotlinowski J,Dulak J,Józkowicz A. Type 2 diabetes mellitus impairs endothelial progenitor cells function [J]. PostepyBiochem,2013,59(3):257-266.

[13] Dimagno MJ,Williams JA,Hao Y,et al. Endothelial nitric oxide sythase is protective in the initiation of caerulein-induced acute pancreatitis in mice [J]. Am J Physiol Gastrointest Liver Physiol,2004,287(1):G80-G87.

[14] Wang XM,Wang Y,WANG Ying,et al. Construction,identification and immunoreactivity of mycobacterium tuberculosis DNA vaccine pVAX1/ESAT-6 plasmid [J]. J South Med Univ,2013,33(7):945-950.

[15] Monika GJ,Edyta P,Bogus?覥aw M,et al. Effects of Angiotensin-Converting Enzyme Inhibition on Circulating Endothelial Progenitor Cells in Patients with Acute Ischemic Stroke [J]. Stem Cells International,2018,2018:2827580.

[16] Nishant PS,Ahmed A,Haitham A,et al. Cardiac rehabilitation:current review of the literature and its Role in Patients with Heart Failure [J]. Curr Treat Options Cardio Med,2018,20(2):12.

[17] Hill JM,Zalos G,Halcox JPG,et al. Circulating endothelial p rogenitor cells,vascular function,and cardiovascular risk [J]. N Engl J Med,2003,348(7):593-600.

[18] Heeschen C,Lehman R,Honold J,et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease [J]. Circulation,2004,109(13):1615-1622.

[19] Yan J,Tie G,Park B,et al. Recovery from hind limb ischemia is less effective in type 2 than in type 1 diabetic mice: roles of endothelial nitric oxide synthase and endothelial progenitor cells [J]. J Vasc Surg,2009,50(6):1412-1422.

[20] Deng Y,Wang J,He G,et al. Mobilization of endothelial progenitor cell in patients with patients with acute ischemic stroke [J]. Neurol Sci,2018,39(3):437-443.

[21] Sheng ZL,Yao YY,Li YF,et al. Transplantation of bradykinin-preconditioned human endothelial progenitor cells improves cardiac function via enhanced Akt/eNOS phosphorylation and angiogenesis [J]. Am J Transl Res,2015, 7(7):1214-1226.

[22] Go?覥?諭b JM,Paczkowska E,Machaliński B,et al. Effects of angiotensin-Converting enzyme inhibition on circμlating endothelial progenitor cells in patients with acute ischenic stroke [J]. Stem CellI Int,2018:2827580.

[23] Kawasaki. K,Smith RS,Hsieh CM,et al. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis [J]. Mol Cell Biol,2003,23(16):5726-5737.

[24] Reyes M,Dudek A,Jahagirdar B,et al. Origin of endothelial progenitors in human postnatal bone marrow [J]. J Clin Invest,2002,109(3):337-346.

[25] Wang S,Chen Z,Tang X,et al. Transplantation of vascular endothelial growth factor 165 transfected endothelial progenitor cells for the treatment of limb ischemia [J]. Mol Med Rep,2015,12(4):4967-4974.

(收稿日期:2018-08-29 本文編辑:封 华)

猜你喜欢
急性心肌梗死
尿激酶溶栓用于老年急性心肌梗死患者的临床护理
心绞痛、急性心肌梗死与甲状腺功能变化的相关性
急性心肌梗死心血管内科治疗的临床研究
急性心肌梗死患者内脏素mRNA基因表达及临床相关性的研究
急性心肌梗死患者的中医辨证治疗分析
替罗非班在急诊PCI术中应用的临床观察
急性心肌梗死患者溶栓治疗中实施临床护理路径的效果分析