ceRNA对植物纤维素形成的调控研究进展

2019-04-29 07:12詹妮谢耀坚吴志华刘果尚秀华
桉树科技 2019年1期
关键词:细胞壁拟南芥纤维素

詹妮,谢耀坚,吴志华,刘果,尚秀华



ceRNA对植物纤维素形成的调控研究进展

詹妮,谢耀坚,吴志华*,刘果,尚秀华

(国家林业和草原局桉树研究开发中心,广东 湛江 524022)

植物纤维素的形成是由多个基因参与且呈网络调控。通过对纤维素形成过程中的关键酶基因、转录因子以及ceRNA研究的阐述,深入了解纤维素生物合成调控机制。综述植物纤维素形成过程中的纤维素合酶、蔗糖合成酶、MYB等重要基因以及lncRNA、miRNA、circRNA类ceRNA,阐述其复杂的分子调控网络,以期解析植物纤维素形成过程中的分子调控机制,深入了解植物纤维素形成过程。

竞争性内源RNA;纤维素;转录因子;表达调控

纤维素作为植物细胞壁中必不可少的结构成分,发挥着重要的作用。植物细胞初生壁中的纤维素微纤丝在植物细胞的扩增阶段调控植物形态建成,次生壁中的纤维素使植物细胞具有特定功能,纤维素对植物生长的重要作用使得对其研究具有重要意义[1]。纤维素形成是个较复杂的过程,该过程涉及一系列重要生物学过程,其中每个过程均由多基因参与且呈网络调控,研究植物纤维素形成过程中的关键基因及其生物合成调控机制,已成为当前研究的热点[2]。

ceRNA(Competing endogenous RNA,竞争性内源RNA)是指生物体内复杂的转录调控网络中的RNA,包括长链非编码RNA(Long noncoding RNA,lncRNA)、微小RNA(MicroRNA,miRNA)以及环状RNA(CircleRNA,circRNA)等[3-4]。ceRNA通过miRNA应答元件(MicroRNA response element,MRE)与靶mRNA竞争性的结合同种的miRNA分子,使miRNA的表达水平及活性相对下降,从而抑制了miRNA对靶mRNA 的沉默效应,发挥调控的作用[5-7]。RNA转录物通过它们所共有的 MREs位点来彼此调节,共有的MREs数量越多,它们的交流或共调节的程度也越大,因此ceRNA 能形成一种大规模转录调控网络,实现lncRNAs,miRNAs及circRNAs等通过MREs进行相互作用,通过竞争MREs 构成一个完整复杂的ceRNA分子调控网络[6]。

1 植物纤维素形成过程中的关键基因

纤维素合酶(Cellulose synthase, CesA)组成纤维素合酶复合体(Cellulose synthase complex, CSC),催化β-1,4糖苷键的形成,合成纤维素,在植物纤维素合成途径中发挥主要调节作用[8]。在大青杨()、苎麻()、马尾松()等木本植物都相继克隆出CesA基因[9-11]。在拟南芥()中CesA1、CesA3、CesA6 负责初生壁的形成[12-14],CesA4、CesA7、CesA8负责次生壁的合成[15-16]。

蔗糖合成酶(Sucrose synthase, SuSy)影响植物细胞分化以及细胞壁的形成,能够提供细胞壁合成的底物,SuSy的活性与纤维素合成有关[17-23]。SuSy基因广泛存在于植物中,CARDINI等[24]首次从小麦()中克隆了SuSy基因,此后在拟南芥、棉花(.)、马铃薯()、胡萝卜()、玉米()、柑橘()、水稻()、枣()、甘蔗()等植物中获得SuSy基因[25-31]。SuSy基因对棉花、烟草()以及杨树的纤维素含量、纤维长度以及纤维强度等至关重要[32-34]。

扩展蛋白(Expansin,EXP)是植物细胞壁重要的组成部分,调节细胞伸展性,通过打断细胞壁纤维素和半纤维素之间的非共价键,从而改变细胞壁承重网络,使其产生位移,导致细胞壁伸展,加速细胞生长,调节组织生长[35-36]。1989年COSGROVE[37]首次从黄瓜()根尖细胞壁中提取分离出EXP。EXP能够塑造初生细胞壁中纤维素-半纤维素网络,EXP的活动能够影响细胞壁的结构和组分,进而影响纤维和导管的形态[38]。GRAY等[39]在杨树中克隆了α-EXP基因和β-EXP基因,发现PttEXP1基因在成熟茎段的次生生长较为活跃。XU等[40]发现在棉花纤维细胞的伸长过程中,α-EXP蛋白发挥了重要的调控作用。SARA等[41]从牵牛花()中获得了一条PhEXP1基因,反义转化后,发现牵牛花表皮细胞面积也相应的减少,细胞壁发生了改变,导致细胞壁机械强度下降。

AGO蛋白(Argonaute protein)主要包含PAZ和PIWI结构域,是小RNA介导的RNA沉默通路中RNA诱导的沉默复合物(RNA-induced silencing complex,RISC)的核心成分。AGO蛋白通过与miRNAs(microRNAs)、siRNAs(small interfering RNAs)、piRNAs(Piwi-interacting RNAs)等不同类型的小非编码RNA(small non-coding RNA)结合,AGO蛋白能够特异地停留在与小RNA互补的靶基因mRNA上,其自身的内切酶可以对目标靶基因进行切割,从而引起靶基因沉默,在调控植物生长发育中起到重要的作用[42-43]。

第3类亮氨酸拉链蛋白(ClassⅢ homeodomain leucine zipper, HD-ZipⅢ)转录因子、MYB(V-myb avian myeloblastosis viral oncogene homo)转录因子以及NAC(No apical meristem/Arabidopsis thaliana transcription activator factor/CUP- -shaped cotyledon)转录因子等在植物细胞生长发育过程中具重要调控作用,参与植物的生长代谢调控[44]。

研究表明,在拟南芥和水稻HD-ZipⅢI家族各有5个成员[45],毛果杨()基因组中则含有8个HD-ZipⅢ基因家族成员[46]。在白云杉()和火炬松()中已分别被克隆到4和5个HD-Zip III基因[47]。MYB类转录因子参与植物苯丙烷类代谢途径的调节,调控次生细胞壁的形成[48-49]。目前,MYB转录因子已在拟南芥、金鱼草()、大豆()、烟草、苹果()、白桦(、毛白杨()等物种中分离并鉴定[50]。HAI 等[51]对玉米和拟南芥MYB转录因子分析发现,有4个亚组的MYB转录因子参与调控次生壁的增厚。刘慧子等[52]研究表明,白桦MYB家族中17条MYB家族基因中的绝大部分参与调控形成层的发育。叶胜龙[53]研究发现,毛白杨MYB055转录因子参与调控次生壁合成,影响苯丙氨酸代谢途径,从而调控纤维素合成等相关基因的表达。

2 植物纤维素形成过程中的ceRNA

测序技术日益发展使基因数据库与转录组数据库日益充实,为ceRNA的挖掘和功能研究提供了有利的数据支持。ceRNA在生物发育和基因表达中发挥着复杂的精确调控功能,对其深入研究有助于揭示基因表达调控网络对于生命体的复杂性[54]。

lncRNA指长度大于200个核苷酸,但含有1个少于100个氨基酸开放阅读框(Open reading frame,ORF)的RNA,可分为长链非编码自然反义转录本(Long noncoding natural antisense transcripts,lincNATs)、内含子 lncRNAs(Intronic lncRNAs)、启动子 lncRNAs(Promoter lncRNAs)和长链基因间 ncRNAs(Long intergenic ncRNAs,lincRNAs)。lncRNAs 可作为与其互作分子的招募者、系结者、引导者、诱捕者和信号分子,从而发挥调控作用[55-57]。lncRNAs通过与miRNA结合,从而隔离miRNA,调控miRNA的表达水平,降低miRNA对mRNA的调控,最终促进了mRNA的表达。在植物中鉴定出大量lncRNAs,如拟南芥[58]、小麦[59]、玉米[60]、谷子()[61]、棉花[62]、江南卷柏()[63]、沙棘()[64]、芒草()[65]以及毛果杨、毛白杨[66-67]。

miRNA是一类内生的且长度约为20 ~ 24个核苷酸的小RNA,在转录以及转录后的过程中调控基因表达[68]。miRNA在细胞内具有多种重要的调节作用,参与了植物器官发育、代谢调节,与细胞的增殖、分化、凋亡等一系列生理过程密切相关[69]。miRNA是通过切割目标靶基因mRNA或抑制其翻译来实现对目标靶基因的调控,这种调控既能够通过一个miRNA调控多个基因的表达,亦可通过几个miRNA共同调控某个基因的表达,从而形成复杂的调控网络[70]。MCNAIR[71]研究发现12个miRNA在正常生长和快速生长桉树()中的表达模式,miRNA在正常桉树和应拉木的发育过程中起重要作用。利用高通量测序技术挖掘了包括2个蓝桉()基因型的木质部,获得了大量的miRNA信息[72]。李崇奇等[73]研究表明,有41个miRNA与巨桉()木质形成相关,主要调控ARF、HD-ZIPIII、KAN、MYB 和NAC转录因子。circRNA是一类线性闭合环状内源性的非编码RNA分子,circRNA通过吸附miRNA并参与其表达调控过程,circRNA 能够特异性结合miRNA,使其失去调控mRNA 的功能,调控基因表达等生物过程[74-77]。circRNA分为外显子circRNA、基因间circRNA和内含子circRNA[78-79]。circRNA广泛表达于不同的植物中,表达具有时空组织特异性,circRNA作为内源性非编码RNA在真核生物的生长发育过程中发挥着重要作用,引起人们广泛的关注[80]。2014年在拟南芥根部发现circRNA后[81],2015年ANDREEVA和COOPER研究报道了circRNA广泛存在于动植物细胞组织中,且具有很多特殊的生物学特性之后,引起国内外科学家的高度重视[82]。在水稻[83-84]、大麦()[85]、番茄()[86]以及小麦[87]中发现存在大量的circRNAs。YE等[84]在水稻的根和拟南芥的叶中分别鉴定了12 037和6 012个circRNAs。

表1 与木质相关的miRNA[73]

通过对参与植物纤维素形成过程中的关键基因、ceRNA的进一步研究,能够更好的解析植物纤维素形成过程中的分子调控机制,以期获得对植物纤维素形成过程的深入了解,从而为育种工作服务。现今在植物中已经鉴定出许多ceRNA,但只有少数做了功能验证,今后植物ceRNA的研究方向可能会趋向于搜索基因的功能,剖析功能冗余以及其应用等方面。

[1] SETHAPPHONG L, DAVIS J K, SLABAUGH E, et al. Prediction of the structures of the plant specific regions of vascular plant cellulose synthases and correlated functional analysis[J]. Cellulose, 2016, 23 (1): 145-161.

[2] PLOMION C, LEPROVOST G, STOKES A. Wood formation in trees[J]. Plant Physiology, 2001, 127 (4): 1513-1523.

[3] STECK E. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions[J]. Journal of Molecular Medicine, 2012, 90(10):1185-1195.

[4] CHANG H Y. Long noncoding RNAs: cellular address codes in development and disease[J]. Cell, 2013, 152(6):1298-1307.

[5] RINN J L, CHANG H Y. Genome regulation by long noncoding RNAs[J]. Annual Review of Biochemistry, 2012, 81(1): 145-166.

[6] SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language?[J]. Cell, 2011, 146(3):353-358.

[7] BARTEL D P. MicroRNAs:Target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.

[8] GU Y, KAPLINSKY N, BRINGMANN M, et al. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 12866-12871.

[9] 许雷,刘一星,方连玉.大青杨纤维素合成酶 PuCesA6 基因cDNA 的克隆及序列分析[J].西南林业大学学报,2012,32(5):26-32.

[10] 刘昱翔,陈建荣,彭彦,等.苎麻纤维素合成酶基因BnCesA4 cDNA 序列的克隆与表达分析[J].作物研究, 2014,28(5):472-478.

[11] 阮维程,潘婷,季孔庶.马尾松纤维素合成酶基因PmCesA1的克隆及其分析[J].分子植物育种,2015,13(4):861-870.

[12] ARIOLI T, PENG L C, BETZNER A S, et al. Molecular analysis of cellulose biosynthesis in Arabidopsis[J]. Science, 1998, 279 (5351): 717-720.

[13] FAGARD M, DESNOS T, DESPREZ T, et al. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis[J]. Plant Cell, 2000, 12(12): 2409-2424.

[14] SCHEIBLE W R, ESHED R, RICHMOND T, et al. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(18): 10079-10084.

[15] TAYLOR N G, LAURIE S, TURNER S R. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis[J]. Plant Cell, 2000, 12(12): 2529-2539.

[16] TURNER S R, SOMERVILLE C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall[J].Plant Cell, 1997, 9(5): 689-701.

[17] BARRERO S C, HERNANDO A S, GONZALEZ M P, et al. Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley[J]. Planta, 2011, 234(2): 391-403.

[18] POOVAIAH C R, MAZAREI M, DECKER S R, et al. Transgenic switchgrass(L.) biomass is increased by over-expression of switchgrass sucrose synthase (PvSUS1)[J]. Biotechnology Journal, 2015, 10(4): 552-563.

[19] 房经贵,朱旭东,贾海锋,等.植物蔗糖合酶生理功能研究进展[J].南京农业大学学报,2017,40(5):759-768.

[20] COLEMAN H D, YAN J, MANSFIELD S D, et al. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(31):13118-13123.

[21] FUJII S, HAYASHI T, MIZUNO K. Sucrose synthase is an integral component of the cellulose synthesis machinery[J]. Plant and Cell Physiology, 2010, 51(2): 294–301.

[22] BAI W Q, XIAO Y H, ZHAO J, et al. Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers[J]. Plos One, 2014, 9(5): e96537.

[23] 詹妮,谢耀坚,陈鸿鹏,等.巨桉 SuSy 基因家族的生物信息学分析[J].热带亚热带植物学报,2018,26(6):580-588.

[24] CARDINI C E, LELOIR F, CHIRIBOGA J. The biosynthesis of sucrose [J]. Journal of Biological Chemistry, 1955, 214(1): 149–156.

[25] 雷美华,叶冰莹,王冰梅,等.甘蔗蔗糖合成酶基因的克隆[J].应用与环境生物学报,2008,14(2):177-179.

[26] BAUD S, VAULTIER M N, ROCHAT C. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis[J]. Journal of Experimental Botany, 2004, 55(396): 397-409.

[27] CARLSON S J, CHOUREY P S, HELENTJARID T, et al. Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene[J]. Plant Molecular Biology, 2002, 49(1): 15–29.

[28] HIROSE T, SCOFIELD G N, TERAO T. An expression analysis profile for the entire sucrose synthase gene family in rice[J]. Plant Science, 2008, 174(5): 534-543.

[29] CHEN A Q, HE S, LI F F, et al. Analyses of the sucrose synthase gene family in cotton: Structure, phylogeny and expression patterns[J]. BMC Plant Biology, 2012, 12(1): 85-102.

[30] 冯延芝,魏琦琦,何潇等.枣蔗糖合成酶基因SS6的克隆及表达分析[J].经济林研究,2017(4):36-42.

[31] 贾春平,耿洪伟,朱亚夫,等.海岛棉蔗糖合成酶基因克隆及生物信息学和表达模式分析[J].分子植物育种,2016,14(2):286-301.

[32] JIANG Y J, GUO W Z, ZHU H Y, et al. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality[J]. Plant Biotechnology Journal, 2012, 10(3): 301-312.

[33] WEI Z G, QU Z S, ZHANG L J, et al. Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height[J]. Plos One, 2015, 10(3): e0120669.

[34] XU S M, BRILL E, LLEWELLYN D J., et al. Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production[J]. Molecular Plant, 2012, 5(2): 430-441.

[35] 赵美荣.植物扩展蛋白基因及其表达调控的研究进展[J].赤峰学院学报(自然版),2014(14):1-5.

[36] COSGROVE D J. Growth of the plant cell wall[J]. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850-861.

[37] COSGROVE D J. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls[J]. Planta, 1989, 177(1): 121-130.

[38] GRAY M M, BLOMQUIST K, MCQUEEN M S, et al. Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen[J]. Plant Biotechnology Journal, 2008, 6(1): 62-72.

[39] GRAY M M, MELLEROWICZ E J, ABE H, et al. Expansins abundant in secondary xylem belong to subgroup A of the alpha-expansin gene family[J]. Plant Physiology, 2004, 135(3):1552-1564.

[40] XU B, GOU J Y, LI F G, et al. A cotton BURP domain protein interacts with α-Expansin and their Co-expression promotes plant growth and fruit production[J]. Molecular Plant, 2013, 6(3): 945-958.

[41] SARA Z, LARA R, GIOVANNI B T, et al. Down regulation of the Petunia hybrida α-Expansin Gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in Petal Limbs[J]. Plant Cell, 2004, 16(2): 295-308.

[42] CENIK E S, ZAMORE P D. Argonaute proteins[J]. Current Biology, 2011,21(12):446-449.

[43] 范春节,闫慧芳,裘珍飞,等.巨桉AGO基因家族的生物信息学分析[J].热带亚热带植物学报,2015,23(4): 361-369.

[44] 程健弘,魏明科,林二培,等.杉木HD-ZipⅢ转录因子的克隆及表达分析[J].农业生物技术学报,2017(11):1820-1830.

[45] ITOH J I, HIBARA K I, SATO Y, et al. Developmental Role and Auxin Responsiveness of Class III Homeodomain Leucine Zipper Gene Family Members in Rice[J]. Plant Physiology, 2008, 147(4):1960-1975.

[46] KO J H, PRASSINOS C, HAN K H. Developmental and seasonal expression of PtaHB1, agene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166)[J]. New Phytologist, 2006, 169(3): 469-478.

[47] CAROLINE L, COTEET B F, ROY V, et al. Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees[J]. BMC Plant Biology, 2010, 10(1): 273.

[48] GEETHALAKSHMI S, BARATHKUMAR S, PRABU G. Thetranscription factor family genes in Sugarcane () [J].Plant Molecular Biology Reporter, 2015, 33(3):512-531.

[49] LI C, WANG X, RAN L, et al.PtoMYB92 is a transcriptional activator of the lignin biosynthetic pathway during secondary cell wall formation intomentosa[J]. Plant and Cell Physiology, 2015, 56(12): 24-36.

[50] LI C, NG C K Y, FAN L M. MYB transcription factors, active players in abiotic stress signaling[J]. Environmental & Experimental Botany, 2015, 114:80-91.

[51] HAI D, BO R F, SI S Y, et al. The R2R3-MYB transcription factor gene family in Maize[J]. Plos One, 2012, 7(6):e37463.

[52] 刘慧子,孙丹,于颖,等.白桦MYB家族基因序列及表达分析[J].植物研究,2016,36(2):252-257.

[53] 叶胜龙.毛白杨MYB055转录因子在次生壁合成中的调控机制研究[D].重庆:西南大学,2015.

[54] SARVER A L, SUBRAMANIAN S. Competing endogenous RNA database[J]. Bioinformation, 2012, 8(15):731-733.

[55] ZHANG Y, TAO Y, LIAO Q. Long noncoding RNA: a crosslink in biological regulatory network[J]. Briefings in Bioinformatics, 2018,19(5):930-945..

[56] ANITA Q G, SOFIA N, HELENA S. Non-Coding RNAs: multi-tasking molecules in the cell[J].International Journal of Molecular Sciences, 2013, 14(8):16010-16039.

[57] WILUSZ J E. Long noncoding RNAs: re-writing dogmas of RNA processing and stability[J]. Biochimica et Biophysica Acta-biomembranes,2016,1859(1): 128-138.

[58] WANG H, CHUNG P J, LIU J, et al. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis[J]. Genome Research, 2014, 24(3):444-453.

[59] CAGIRICI H B,ALPTEKIN B,BUDAK H.RNA sequencing and co-expressed long non-coding RNA in modern and wild wheats[J].Scientific Reports,2017,7(1): 10670.

[60] LI L, EICHTEN S R, SHIMIZU R, et al. Genome-wide discovery and characterization of maize long non-coding RNAs[J]. Genome Biology, 2014, 15(2): R40.

[61] QI X, XIE S, LIU Y, et al. Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing[J].Plant Molecular Biology, 2013, 83(4-5): 459-473.

[62] LU X, CHEN X, MU M, et al. Genome-wide analysis of long noncoding RNAs and their responses to drought stress in cotton(L.)[J]. Plos One, 2016, 11(6): e0156723.

[63] ZHU Y, CHEN L, ZHANG C, et al. Global transcriptome

analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii[J].BMC Genomics, 2017, 18(Suppl1): 1042.

[64] ZHANG G, DUAN A, ZHANG J, et al. Genome-wide analysis of long non-coding RNAs at the mature stage of sea buckthorn(Linn)fruit[J]. Gene, 2017, 596: 130-136.

[65] XU Q, SONG Z, ZHU C, et al. Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change[J]. BMC Plant Biology, 2017,17(1): 42.

[66] LV Y, LIANG Z, MIN G, et al. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize(L.)[J].BMC Genomics, 2016, 17(1): 350.

[67] TIAN J, SONG Y, DU Q, et al. Population genomic analysis of gibberellin-responsive long non-coding RNAs in[J]. Journal of Experimental Botany, 2016, 67(8):2467-2482.

[68] AXTELL M J. Classification and comparison of small RNAs from plants[J].Annual Review Plant Biology,2013, 64:137-159.

[69] PARK S M, PETER M E. microRNAs and death receptors[J]. Cytokine & Growth Factor Reviews, 2008, 19(3/4): 303-311.

[70] SHUAI P, LIANG D, ZHANG Z,et al.Identification of droughtresponsive and novelmicroRNAs by highthroughput sequencing and their targets using degradome analysis[J].BMC Genomics,2013,14:233.

[71] MCNAIR G R. Whole-tree and tension wood-associated expression profiles of micrornas intrees[D]. Pretoria: University of Pretoria,2009.

[72] PAPPAS M, REIS A, FARINELL L, et al. Interspecific discovery and expression profiling ofmicro RNAs by deep sequencing[J]. BMC Proceedings, 2011, 5(7):1-2.

[73] 李崇奇,沈文涛,言普,等.巨桉miRNA及其靶基因生物信息学预测[J].南方农业学报,2014,45(9):1532-1538.

[74] NIGRO J M, CHO K R, FEARON E R., et al. Scrambled exons.[J]. Cell, 2016, 64(3):607-613.

[75] EBERT M S, NEILSON J R, SHARP P A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells[J]. Nature Methods, 2007, 4(9): 721-726.

[76] 岳慧芳,任永哲,王志强,等.circRNAs在植物中的研究进展[J].西北植物学报,2018,38(2):386-392.

[77] LIU Q, ZHANG X, HU X, et al. Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 ‘Sponge’ in human cartilage degradation[J]. Scientific Reports, 2016, 6: 22572.

[78] CHEN B, HUANG S. Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer[J]. Cancer Letters, 2018, 418(18):30033-30038.

[79] GREENE J, BAIRD A M, BRADY L, et al. Circular RNAs: biogenesis, function and role in human diseases[J]. Frontiers in Molecular Biosciences, 2017, 4:38.

[80] LEE S M, KONG H G, RYU C M. Are Circular RNAs New Kids on the Block?[J]. Trends in Plant Science, 2017, 22(5):357-360.

[81] WANG P L, BAO Y, YEE M C, et al. Circular RNA Is expressed across the eukaryotic tree of life[J]. Plos One, 2014, 9(6):e90859.

[82] ANDREEVA K, COOPER N G F. Circular RNAs: new players in gene regulation[J]. Advances in Bioscience & Biotechnology, 2015, 6(6): 433-441.

[83] CHU Y Y, LI C, CHEN L, et al. Widespread noncoding circular RNAs in plants[J]. New Phytologist, 2015, 208(1): 88-95.

[84] YE C Y, ZHANG X, CHU Q, et al. Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice[J]. RNA Biology, 2016, 14(8):1-9.

[85] DARBANI B, NOEPARVAR S, BORG S. Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley[J]. Frontiers in Plant Science, 2016, 7:776.

[86] ZUO J, WANG Q, ZHU B, et al. Deciphering the roles of circRNAs on chilling injury in tomato[J]. Biochemical & Biophysical Research Communications, 2016, 479(2): 132-138.

[87] WANG Y, YANG M, WEI S, et al.Identification of circular RNAs and their targets in leaves ofL. under dehydration stress[J]. Frontiers in Plant Science, 2017, 7: 1-10.

Research Progress in the Regulation of ceRNA on Plant Cellulose Formation

ZHAN Ni, XIE Yaojian, WU Zhihua, LIU Guo, SHANG Xiuhua

(,)

The formation of plant cellulose is regulated by multiple genes and pathways. In this paper, the key enzyme genes, transcription factors and ceRNA in the process of cellulose formation are elaborated to further understand the regulation mechanism of cellulose biosynthesis. The key genes including cellulose synthase, sucrose synthase, MYB and ceRNA including lncRNA, miRNA and circRNA in the process of plant cellulose formation are reviewed. The complex molecular control network is expounded in order to analyze the molecular control mechanism of plant cellulose formation, and to understand the process of plant cellulose formation.

ceRNA; cellulose; transcription factors; expression regulation

Q74

A

国家自然科学基金面上项目“桉树抗风特性及其主要影响因子研究”(31570615);国家重点研发计划课题“桉树、云南松(思茅松)、华山松丰产增效技术集成与示范”(2017YFD0601202)

詹妮(1990― ),女,博士研究生,主要从事桉树林木遗传育种方面的研究,E-mail: jennyzn1122@163.com

吴志华(1974― ),男,副研究员,主要从事林木逆境生理研究,E-mail: wzhua2889@163.com

猜你喜欢
细胞壁拟南芥纤维素
纤维素基多孔相变复合材料研究
纤维素气凝胶的制备与应用研究进展
植物初生细胞壁纤维素晶体结构新特征(2020.9.19 Plant Biotechnology Journal)
富天冬酰胺蛋白增强拟南芥辐射抗性的研究
基于近红外技术的苎麻叶半纤维素、纤维素、木质素及Cd含量快速测定
浅谈植物细胞壁的形成机制
红花醇提物特异性抑制酿酒酵母细胞壁合成研究
茄科尖孢镰刀菌3 个专化型细胞壁降解酶的比较
两种LED光源作为拟南芥生长光源的应用探究
纤维素晶须的制备研究