如果有件智能衣服,可以感知皮肤表面湿度,出汗时长袖变为短袖,汗干后又恢复如初,那将多么神奇。如今,这一设想已经成为可能。南开大学药物化学生物学国家重点实验室刘遵峰教授团队研获了一种绿色环保的纯蚕丝“人工肌肉”,可通过感知湿度实现自动伸缩。这种新型“人工肌肉”,不仅可以用于智能织物,在柔软机器人研发领域也将大有可为。日前,介绍该成果的论文发表于材料领域国际权威期刊《先进功能材料》(Advanced Functional Materials)上。
刘遵峰团队利用天然纯蚕丝制备了一种新型的“人工肌肉”纤维,不使用化学修饰和添加剂,通过脱胶、加捻、合股、热定型等常规工业流程制作获得。蚕丝“人工肌肉”在水雾和湿度驱动下实现了扭转、拉伸和收缩致动。为了不需要外界固定就能实现可逆驱动,刘遵峰团队开发了一种扭矩平衡的纤维结构,通过将扭曲的纤维对折、合股,使得蚕丝纤维实现了自平衡。记者在该实验室看到,研究人员用蚕丝伸缩肌肉编织了一件玩偶大小的智能上衣,实现了环境湿度增加时(例如,由于汗水或潮湿环境),智能上衣的衣袖长度收缩至原长度的一半;湿度下降时又恢复如初。这种水分敏感的纺织品,可以通过改变宏观形状非常有效地实现水分和热量的管理功能。(来源:天津日报)
马里兰大学(UMD)的科学家声称发现一种可随周围环境自动升温或降温的新型材料。
这款布料会依据环境条件改变其绝缘性能。例如,在温暖及潮湿条件下,像是夏天时出汗的身体,布料会允许红外线(辐射热)通过。当环境变得更凉爽与干燥时,布料就会减少热量的逸出。红外线是人体释放热量的主要方式,也是这项新技术的重点。这种新型纺织品的基本纱线是由两种不同合成材料组合的纤维所制成:吸水及防水。这些纱线涂有碳纳米管,是种特殊的轻质碳基导电金属,由于纤维中的材料既防水又吸水,所以当其暴露于潮湿环境(如出汗体周围)时,纤维会翘曲起来,使纱线更紧密结合,并出现两种状况:首先,织物中的孔隙会张开,允许热量逸出,因此具微冷却效果;其次,改变涂层中碳纳米管之间的电磁耦合。虽然在这款布料商业化之前,还有更多任务要做,但研究人员表示,基础纤维所用的材料取得容易,且在标准染色过程中可以很容易地添加碳涂层。(来源:亚洲纺织联盟网)
现在一架飞机重量的52%~53%,或者说一架飞机体积的80%以上都是碳纤维复合材料。与传统的铝合金材料相比,它可以使飞机的自身重量大大降低,但使其脆性变强。3月5日,中科院国家纳米科学中心与空客(北京)工程技术中心在北京签署合作协议,将就碳纤维复合材料通过纳米改性以增强韧性等一系列问题联合攻关。
一代材料一代飞机。碳纳米复合材料的发明及应用,带来了航空工业的革命。但这种复合材料的应用还有一些问题需要解决。除了韧性差以外,导电性能也有所降低。据国家纳米科学中心研究员张忠介绍,一架飞机的使用寿命大约为30年,平均每架飞机都要承受一次大的雷电。与铝合金材料相比,碳纤维复合材料的导电性能降低了,科学家们正在通过纳米改性技术来增加纤维材料的导电性能,以应对飞机“一生”中可能会碰到的那次大的雷电。
“纳米科技作为新兴的前沿科技领域,正在改变着人类对客观世界的认知,也将引发一场新的工业革命。”国家纳米科学中心主任刘鸣华说。
据了解,签署协议的双方除了将开展增韧纳米复合材料、导电纳米复合材料的研究外,还将在更具前瞻性的自感应和自愈合纳米复合材料以及纳米健康监测复合材料等领域开展合作研究,旨在探索如何将先进纳米复合材料技术应用于飞机设计和制造领域。(来源:兰州日报)
浙江大学农学院张天真教授课题组在棉花种子中找到一个能直接感知环境温度并调控种子萌发的小分子“开关”。研究人员表示,对于种子温度响应机制的发现,将进一步指导人们在低温、干旱、盐碱地精准育种。相关论文于日前发表于《美国科学院院报》。
正常情况下,棉花种子在吸足水分后24小时开始萌发,一次试验中,研究人员发现,有一组棉花种子萌发的时间量缩减一半,吸水后12小时就陆续萌发。提前萌发的棉花种子内,一种小分子热激蛋白“HSP24.7”的含量特别高。
“这种小分子热激蛋白就像植物的一个温度感受器,蛋白含量升高后,种子内的线粒体产生更多的活性氧,还会促成包裹在胚芽之外的胚乳膜的降解,所以棉花种子即使在低温下也会迅速萌发。如果缺少这个蛋白,即使环境温暖和煦,种子仍会像在低温中一样‘休眠’。”张天真说,通过进一步试验,他们发现这一机制在双子叶植物中普遍适用。
张天真说,种子萌发是植物生命周期开始的第一步,田里的棉花如果能“统一步调”,而不是各有节奏,就能高效地实现同步采收,这是农作物精准育种的目标之一。(来源:新华网)
中国科学院苏州纳米技术与纳米仿生研究所张学同研究员领导的气凝胶团队制备了一种具有高孔隙率(98%)和高比表面积(365.99m2/g)的柔性气凝胶薄膜,通过溶解杜邦TM的Kevlar获得纳米纤维溶胶,再经刮刀涂布、溶胶-凝胶及后续的冷冻干燥过程获得Kevlar气凝胶薄膜。
该气凝胶具有优异的隔热性能,室温环境下,热导率约为0.036 W/m·K,200μm厚的气凝胶薄膜覆盖在300℃的热源上,气凝胶表面温度仅为220℃,温差达到了80℃。与相变材料聚乙二醇复合并进行疏水化处理,制备出气凝胶/相变复合薄膜,该相变复合薄膜:(1)相变焓高达179.1 J/g;(2)红外发射率与多数环境背景匹配;(3)在3μm~15μm红外波段具有超低红外透过率。在室外环境(如光照)下,用该复合薄膜覆盖无发热物体,可实现红外隐身。对持续发热物体(比如发动机),提出了气凝胶隔热层与相变复合薄膜叠加的组合结构:Kevlar气凝胶薄膜具有优异的隔热性能,根据目标与环境之间的温度差异,选择合适层数或者厚度的气凝胶层,可将温度降低至与环境温度匹配;相变复合薄膜具有低红外透过率,高温目标发射的红外光无法透过。因而覆盖这种组合结构的高温目标在红外照片中也能实现红外隐身。根据使用场景,选用匹配的气凝胶/相变复合薄膜,或者组合结构,即可实现红外隐身。