张 庆,贾一磊,杨连新,王余龙,王云霞
(1.扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心,江苏 扬州 225009;2.扬州大学环境科学与工程学院,江苏 扬州 225009)
微量营养元素缺乏可导致人体异常发育和许多慢性疾病[1-2]。锌、铁都是人类容易缺乏的微量元素,全世界大约20亿人被这两个元素缺乏所困扰,造成每年有6300万人因缺锌/铁死亡[3]。这些人群通常饮食单一,主要依靠C3谷物和豆类作物作为他们膳食中锌和铁的主要来源,而这些主食通常微量元素浓度和生物有效性较低[2,4]。因此,增加农作物食用部位微量元素的浓度已受到越来越多的关注[1-2,5-6]。随着现代医学的发展以及人类“回归自然”的追求日趋强烈,通过生物强化策略即通过农艺或遗传育种途径提高主食微量元素含量,无需改变传统饮食习惯,被认为是解决人类营养健康问题的主要途径[1-2]。
一般认为根系是作物摄取锌的主要途径,叶面吸收则是重要的补充途径。与土施锌肥相比,叶面施锌肥更加便捷,肥料利用率更高,还可避免土施可能造成的重金属污染[2,7-10],因此生产上有广泛应用。小麦是世界上最重要的主食作物之一,但其食用部分锌含量及其生物有效性均很低[2]。已有文献表明,叶面施锌不仅能高效便捷地增加麦粒的锌浓度,还可增加其生物有效性[2,11-12],但这些研究主要聚焦整个谷粒锌的生物有效性,谷粒不同组分特别是面粉锌的生物有效性报道较少[9-12]。
工业革命以来随着人类活动的影响,臭氧的前体物如挥发性有机物和氮氧化合物大量释放到空气中,导致地表O3浓度上升;与其他国家相比,近年来我国地表O3浓度的增幅更为明显,某些地区作物生长季的日平均O3浓度已经超过50 nL·L-1[13-14]。作为强氧化剂,目前空气中的臭氧浓度升高已经对作物生产力造成危害,未来这种影响可能更为严重[13,15-18]。高臭氧浓度环境下,作物形态和生理上均会产生明显变化,例如光合下调、叶片枯黄、植株早衰以及产量损失等[15-19]。多数情形下,臭氧浓度升高使禾谷类作物如小麦[20-22]和水稻[23-24]谷粒锌浓度增加或不变,但谷粒不同组分对臭氧的响应是否一致尚待明确。植物食用部分锌的生物有效性与植酸含量关系密切,后者在逆境下通常呈增加趋势[25]。谷粒植酸含量增加通常降低锌的生物有效性,但臭氧浓度升高环境下小麦籽粒不同组分植酸浓度的变化未见报道。另外,臭氧胁迫导致叶片气孔部分关闭[17],可能会影响叶面施锌的效果,因为气孔的存在和开张与叶片对极性溶液的吸收有关[26-28],但这一假设尚未被验证。
本研究以富锌小麦青紫1号[29]为试验材料,依托自然光气体熏蒸平台[30-32],研究拔节至成熟期臭氧浓度升高和抽穗后叶面施锌对小麦籽粒产量和锌营养水平的影响。本文主要研究目的为:明确叶面施锌、臭氧浓度升高对小麦产量的影响及其与产量构成因子的关系;叶面施锌、臭氧处理对小麦籽粒不同组分锌营养水平的影响强度;小麦锌生物强化的效果是否受地表臭氧浓度升高的影响。
本试验于2014—2015年在扬州大学文汇路校区自然光气体熏蒸平台上实施。试验平台的结构、性能和控制情况详见文献[30-32]。平台为自然采光,同时利用土培方式培育植株,以避免盆栽方式对水稻根系生长的限制。土壤理化性质为:碱解N 70.0 mg·kg-1,速效 P 22.7 mg·kg-1,速效 K 62.5 mg·kg-1,有效Zn 9.7 mg·kg-1,土壤pH 7.5。
试验采用裂区设计,臭氧处理为主区,叶面施锌处理为裂区。臭氧处理设2个水平,即清洁空气(Clean air,对照)和臭氧浓度升高(100 nL·L-1)。臭氧处理时间从2015年3月23日(拔节)至5月20日(成熟),这段时间因系统故障或天气异常等原因停止运行4 d,实际运行55 d。臭氧处理从每日上午9:00开始至下午5:00结束。温度、光照和大气压实时模拟室外环境[30],平台的控制动态示于图1。臭氧是以纯氧作为气源,由佳环臭氧发生器(QD-001-3A)生产,通过臭氧分析仪(Model 49i)对处理浓度实时监测(图1)。叶面施锌处理设对照(喷施与叶面肥等量的清水)和喷施0.1%的硫酸锌溶液(浓度以Zn2+计),喷施时期为开花期和花后1周,共2次,每次用量均为600 L·hm-2,每个处理重复4次。喷锌时用塑料薄膜隔开其他植株,对叶片均匀地喷施上述溶液。
本研究以富锌小麦品种青紫1号[29]为供试材料。2014年12月2日播种,采用人工条播方式,行距18.7 cm,100株·m-2。2014年12月15日间苗,2015年4月4日开花,2015年5月21日收获。小麦全生育期施氮总量为22.5 g·m-2,其中基肥、拔节肥和孕穗肥分别占施氮总量的50%、30%和20%;基肥、拔节肥和孕穗肥分别于2014年12月1日、2015年3月16日和3月28日施用。磷和钾施用量均为13.5 g·m-2,全部作为基肥施用。水分管理和病虫草害防治同常规大田。
小麦成熟时每处理组合取8穴植株的穗子,手工脱粒后测定每穗粒数、千粒重,计算小麦理论产量。籽粒用磨粉机(Sedimat Laboratory Mill,BrabenderTMGmbH&Co,Germany)分为麸皮、次粉和面粉 3个组分,各组分的分离和收集参照齐义涛等[11-12]的方法,简要说明如下:不能通过40目筛的部分为麸皮,通过40目但不能通过100目筛的为次粉,能通过100目筛的部分为面粉。
锌的测定方法如下:称取0.5 g烘干样品置于微波消解罐中加浓硝酸5 mL和超纯水3 mL,利用微波消解仪(MARS 5,CEM Corporation,USA)消解后定容至 50 mL,过滤后用 ICP-AES(IRIS Intrepid II XSP,Thermo Elemental,USA)测定滤液中锌元素浓度。
植酸的测定主要参照Lapteva[33],但对植酸提取步骤做了改进,简述如下:在0.25 g左右烘干样品中加入 5 mL 0.7%HCl,25 ℃恒温振荡1 h,4000 r·min-1离心15 min;取适量上清液,加入由FeCl3和磺基水杨酸配制的显色剂进行显色反应,然后在500 nm波长下测定样品吸光度;根据由植酸钠配制的标准曲线计算植酸浓度。
图1 小麦生长季自然光气体熏蒸平台的控制状态Figure 1 The performance of greenhouse-type fumigation chambers in wheat growing season
数据用SPSS(V 19.0)进行统计分析,Duncun法进行多重比较;用Excel 2010绘制图表。
青紫1号产量对臭氧浓度升高和灌浆初期叶面施锌的响应示于图2a。与干净空气相比,臭氧胁迫使小麦籽粒产量平均降低517 g·m-2,降幅为66%,其中不喷锌和喷锌条件下分别下降64%、68%,均达极显著水平。与不喷锌小麦相比,叶面施锌对不同臭氧浓度环境下小麦的产量均无显著影响。方差分析表明,臭氧胁迫与叶面施锌对小麦产量无互作效应。
从产量构成因素看,臭氧浓度升高对小麦每平方米穗数没有显著影响,但使每穗粒数和千粒重较对照平均分别下降27%和53%,均达极显著水平,不喷锌和喷锌条件下降幅相近(图2b~图2d)。与产量相同,叶面施锌及其与臭氧处理的互作对3个产量构成因子均无显著影响。
与清洁空气相比,臭氧胁迫使籽粒锌浓度平均增加27%(相当于13 mg·kg-1),其中不喷锌和喷锌条件下分别增加30%和25%,均达极显著水平(图3)。两臭氧处理,叶面施锌使籽粒锌浓度平均增加24%,其中清洁空气和臭氧胁迫下的增幅分别为27%、22%,均达极显著性水平。统计分析表明,臭氧胁迫和叶面施锌对籽粒的锌浓度没有互作效应。
图2 臭氧浓度升高和叶面施锌对小麦产量(a)、每平方米穗数(b)、每穗粒数(c)和千粒重(d)的影响Figure 2 Effects of elevated ozone concentration and foliar zinc application on grain yield(a),panicle number per square meter(b),grain number per panicle(c)and 1000-grain weight(d)of wheat
图3 臭氧浓度升高和叶面施锌对小麦籽粒锌浓度的影响Figure 3 Effects of elevated ozone concentration and foliar zinc application on Zn concentration in grains of wheat
图4 臭氧浓度升高和叶面施锌对小麦籽粒面粉、次粉和麸皮锌浓度的影响Figure 4 Effects of elevated ozone concentration and foliar zinc application on Zn concentration in flour,shorts and bran of wheat
青紫1号小麦面粉、次粉和麸皮的锌浓度示于图4。所有处理平均,小麦面粉、次粉和麸皮的锌浓度分别为21、31 mg·kg-1和98 mg·kg-1,次粉和麸皮锌浓度分别是面粉的1.5倍和4.7倍,组分间差异达极显著水平。臭氧浓度升高使小麦面粉、次粉和麸皮锌浓度平均分别增加20%、41%和15%,其中未喷锌条件下的增幅分别为18%、40%和18%,喷锌下的增幅分别为21%、42%和12%,均达0.05以上显著水平。与对照相比,叶面施锌本身使小麦面粉、次粉和麸皮锌浓度平均分别增加23%、22%和24%,其中清洁空气下分别增加22%、21%和27%,臭氧胁迫下分别增加25%、23%和21%,均达0.05以上显著水平。统计表明,臭氧×组分、锌×组分之间的互作均达0.01显著水平。
臭氧浓度升高使籽粒植酸浓度平均增加26%,不喷锌和喷锌条件下的增幅相近,均达极显著水平(图5)。叶面施锌及其与臭氧处理的互作对该品种植酸浓度无显著效应。
图5 臭氧浓度升高和叶面施锌对小麦籽粒植酸浓度的影响Figure 5 Effects of elevated ozone concentration and foliar zinc application on concentration of phytic acid(PA)in grains of wheat
籽粒不同组分间植酸浓度存在极显著差异:次粉、麸皮锌浓度的植酸浓度平均分别是面粉的1.8倍和7.4倍(图6)。与干净空气相比,臭氧胁迫使小麦面粉、次粉和麸皮植酸浓度平均分别增加8%、45%和13%,不喷锌和喷锌条件下增幅接近。与对照相比,叶面施锌对上述组分的植酸浓度没有显著影响(除臭氧处理小麦的次粉部位,见图6)。臭氧处理与组分互作对植酸浓度的影响达到了极显著水平。
尽管臭氧浓度升高对籽粒植酸与锌摩尔比没有影响,但叶面施锌处理使之平均下降18%,其中清洁空气和臭氧胁迫下分别下降19%和16%,均达极显著水平(图7)。统计分析表明,臭氧和叶面施锌处理之间没有互作效应。
图6 臭氧浓度升高与叶面施锌对麦粒面粉、次粉和麸皮植酸浓度的影响Figure 6 Effects of elevated ozone concentration and foliar zinc application on PA concentration in flour,shorts and bran of wheat
图7 臭氧浓度升高和叶面施锌对小麦籽粒植酸与锌摩尔比的影响Figure 7 Effects of elevated ozone concentration and foliar zinc application on the molar ratio of phytic acid to Zn(PA/Zn)in grains of wheat
图8 臭氧浓度升高和叶面施锌对麦粒面粉、次粉和麸皮植酸与锌摩尔比的影响Figure 8 Effects of elevated ozone concentration and foliar zinc application on PA/Zn in flour,shorts and bran of wheat
从不同组分的植酸与锌摩尔比看,面粉、次粉和麸皮平均分别为15、18和24,组分间差异达极显著水平(图8)。与清洁空气相比,臭氧浓度升高对小麦各组分植酸与锌摩尔比多无显著影响。与不施锌相比,锌处理使小麦面粉、次粉和麸皮植酸与锌摩尔比平均分别降低17%、15%和19%,其中清洁空气下分别下降15%、19%和21%,臭氧胁迫下分别下降18%、11%和17%,除臭氧处理小麦的次粉部位外均达显著水平。统计表明,臭氧与锌处理之间以及两处理与组分之间的交互作用均未达显著水平。
将小麦籽粒同一组分不同处理的锌累积量进行平均,小麦次粉、麸皮的锌累积量分别是面粉的2.7、7.9倍,组分间差异达极显著水平(图9a)。臭氧胁迫使麦粒各组分锌累积量大幅下降,其中面粉的降幅(63%~67%)明显大于次粉和麸皮部位(50%~61%)。与不施锌相比,叶面施锌使小麦面粉、次粉和麸皮锌累积量均呈增加趋势,清洁空气下小麦的增幅大于臭氧胁迫下。臭氧×锌、臭氧×组分对锌累积量的影响均达显著水平。
图9 臭氧浓度升高和叶面施锌对麦粒面粉、次粉和麸皮锌累积量(a)和分配比例(b)的影响Figure 9 Effects of elevated ozone concentration and foliar zinc application on Zn accumulation(a)and distribution(b)in flour,shorts and bran of wheat
所有处理平均,面粉、次粉和麸皮中锌累积量占比分别为8%、24%和68%,组分间差异达极显著水平(图9b)。臭氧胁迫对次粉和麸皮部位锌的比例无显著影响,但臭氧处理下不喷锌小麦和喷锌小麦面粉锌的比例分别下降22%(P<0.01)和17%(P<0.1)。叶面施锌处理对各组分锌累积量占籽粒总锌量的比例均无显著影响。方差分析表明,仅臭氧×组分互作对麦粒锌的分配有极显著影响。
小麦是对臭氧胁迫敏感的作物,臭氧胁迫环境下小麦产量明显下降[13,17-19,22,34]。Feng等[34]对 52 篇文献的整合分析发现,与干净空气相比,72 nL·L-1臭氧浓度使小麦产量平均下降29%。本研究表明,100 nL·L-1臭氧浓度使青紫1号籽粒产量由平均784 g·m-2降低到平均267 g·m-2,降幅为66%(图2)。从产量构成因素看,臭氧浓度升高对小麦穗数没有显著影响,但千粒重和每穗粒数大幅下降,分别下降53%和27%。这与前人多数报道一致[18,34]。这一结果说明,臭氧胁迫对籽粒灌浆过程的抑制作用明显大于穗分化过程,前者是产量损失的主要原因[18]。与臭氧处理不同,开花及花后1周叶面喷施0.1%ZnSO4对青紫1号产量及产量构成因素无显著影响,这与多数小麦研究结果一致[6,35]。
前人研究表明,臭氧胁迫下籽粒微量元素包括锌浓度多数表现为增加,但亦有没有变化的报道[20-24]。本研究发现100 nL·L-1臭氧使籽粒锌浓度增加27%,这一增幅大于前人报道[20-22],这可能与青紫1号对臭氧浓度升高较为敏感有关,这也反映在臭氧胁迫下其产量大幅下降(图2)。与人类营养直接相关的是面粉中的锌浓度,本研究将小麦籽粒从外到内分为麸皮、次粉和面粉3个组分,与前人报道一致[11],麦粒不同组分锌浓度存在显著差异,最外层麸皮的锌浓度约为最内层面粉的5倍,不同处理谷粒趋势一致(图4)。籽粒外周麸皮富集锌的能力大于次粉特别是面粉,这与麸皮包括糊粉层有关:该层具有高浓度的植酸和蛋白质,是一个富集锌的强库[10]。臭氧浓度升高对谷粒不同组分锌浓度的影响未见报道。本研究发现无论是喷锌还是对照,臭氧胁迫使麦粒各组分的锌浓度均显著增加,且臭氧与组分间存在互作效应:次粉锌浓度的增幅明显大于面粉和麸皮(图4)。可能是由于臭氧胁迫使籽粒灌浆不完全,较小的籽粒中种皮占比相对较大,造成次粉中含有较多种皮成分。此外,一般认为,臭氧胁迫导致作物食用部分微量元素浓度增加的主要原因与“浓缩效应”有关,即臭氧胁迫对碳水化合物积累的影响大于微量元素[25]。臭氧胁迫下锌浓度响应的这种部位差异是否由上述两种可能机制造成,还是另有原因(如转运),需要进一步研究。
前人研究显示小麦抽穗后叶面施锌能显著增加谷粒中的锌浓度[6,10-11,35-36]。本文富锌小麦青紫 1 号籽粒的锌浓度为42 mg·kg-1,籽粒锌浓度高于普通小麦品种[29]。从锌处理看,开花期及花后1周叶面喷施0.1%ZnSO4麦粒锌浓度平均增加到60 mg·kg-1,增幅为24%;这个增幅与本文臭氧处理的效应接近,但略小于前人锌处理的报道[6,10-11,35-36]。这说明喷锌效果可能存在品种依赖[37];另外,这也可能与本试验喷锌强度较小有关(表现在喷锌浓度小且喷施次数少),例如齐义涛等[11]用0.2%ZnSO4喷施3次,而本试验采用0.1%的ZnSO4喷施2次。从籽粒不同组分看,喷锌处理使面粉、次粉和麸皮锌浓度平均分别增加23%、22%和24%,各组分的响应很接近(图4)。这可能与青紫1号对锌的转运效率较高有关,即籽粒发育早期叶面喷施锌肥可高效增加胚乳部位的锌浓度。本课题组前期研究亦发现类似现象[11],但这种影响的生理机制还有待探明。
臭氧胁迫通常引发叶片受损和气孔部分关闭,生长后期更为明显[16-17],这些均可能会削弱花后叶面施锌的效果[26-28]。与此不同,本试验结果显示锌处理使干净空气下籽粒面粉、次粉和麸皮锌浓度增加21%~27%,使臭氧胁迫环境下各组分的锌浓度增加21%~25%,两种生长环境下的喷锌效应没有差异,这也表现在臭氧×锌、臭氧×锌×组分间均无互作效应(图4)。一个可能的解释是,臭氧胁迫环境下小麦生长受抑,群体变小,单位叶片面积喷到的ZnSO4溶液多于非胁迫小麦,这部分抵消了臭氧胁迫叶片气孔部分关闭造成的不利影响。当然这一假设还需更多品种试验的验证。
锌的营养水平除了与锌浓度有关外,还与植酸的含量密切相关,后者容易与金属离子结合形成难溶性的盐,限制人类对包含Zn在内的营养元素的吸收[1,38]。与锌在籽粒中的空间分布相同,植酸浓度亦以面粉含量最低,其次是次粉,麸皮最高(最大相差7.4倍),这与前人报道一致[12]。Wang等[25]综述表明,逆境作物的植酸浓度通常呈增加趋势,这会降低微量元素的生物有效性,但臭氧胁迫对麦粒植酸浓度的影响及其与籽粒不同部位的关系未见报道。本研究表明,臭氧处理使籽粒植酸浓度平均增加26%,其中面粉、次粉和麸皮植酸浓度平均分别增加8%、45%和13%,不喷锌和喷锌条件下增幅接近,多达极显著水平(图5~图6)。臭氧处理对次粉植酸浓度的影响明显大于其他两个部位,这与前述的锌处理影响相似(图4),但其原因尚不清楚。从锌处理影响看,前人报道结实期叶面施锌使谷粒植酸浓度增加[2]或没有影响[37]。本试验中叶面施锌及其与臭氧处理或组分间的交互作用对植酸浓度均无显著影响(图5~图6),说明叶面施锌不会造成植酸浓度的变化,不同臭氧处理或不同组分趋势一致。
谷粒中锌的有效性不仅与锌和植酸的绝对量有关,更取决于植酸与锌的摩尔比[1,39]。小麦籽粒不同组分的PA/Zn摩尔比从大到小依次为麸皮、次粉和面粉。臭氧浓度升高对小麦不同组分生物有效锌的影响未见报道。本试验中臭氧处理同时增加了麦粒不同组分锌和植酸的浓度,故各组分的植酸与锌摩尔比均没有显著变化(图7~图8)。前人少量研究表明,叶面施锌使小麦籽粒 PA/Zn 摩尔比下降[9,12,36]。本文发现,叶面施锌显著降低小麦籽粒各组分的PA/Zn摩尔比:两臭氧处理平均,锌处理使小麦面粉、次粉和麸皮的PA/Zn摩尔比平均分别降低17%、15%和19%,各组分降幅相近,这与齐义涛等[12]报道一致。花后施锌没有改变籽粒的植酸浓度,因此PA/Zn摩尔比的降低主要是籽粒中锌含量增加所致。另外,锌处理对小麦籽粒PA/Zn摩尔比的影响亦不受臭氧熏蒸的影响,表现在臭氧×锌、臭氧×锌×组分互作均不显著(图8)。
从锌分配看,锌主要累积在麦粒麸皮和次粉部位,而这些部位在加工过程多被去除,导致面粉中的锌含量锐减,只占籽粒总锌的8%。因此,小麦的锌生物强化应以增加面粉中的锌浓度而非籽粒全锌为重点[40-41]。虽然臭氧处理使籽粒锌浓度增加,但产量锐减导致麦粒各组分锌积累量均显著下降,其中以面粉的降幅最大(图9a);与此相吻合,臭氧胁迫导致面粉的锌分配比例显著下降(-20%)。与臭氧处理有所不同,叶面施锌使籽粒锌浓度增加但产量未变,故籽粒锌累积量亦随之增加[11,42];由于各组分增幅相近,叶面施锌处理对三组分的锌分配比例无显著影响,与齐义涛等[11]报道一致。
本研究表明,花后叶面施锌能有效和高效地增加小麦品种青紫1号籽粒各组分的锌浓度及其有效性,且叶面施锌的效果不受臭氧浓度升高的影响。从小麦拔节开始,持续中等强度的臭氧胁迫使籽粒各组分锌和植酸浓度同步增加,但由于产量大幅下降,造成小麦籽粒锌累积量大幅下降。