边彩莲 黄立宏 王佳伏
摘 要 在经典传染病模型的基础上,通过考虑阈值策略,研究了一类基于媒体报道的不连续的传染病模型.利用Filippov意义下的右端不连续微分方程理论,对阈值策略下传染病模型的动力学行为进行了定性分析,并利用Poincaré映射研究了无病平衡点、地方病平衡点及伪平衡点的全局渐近稳定性.
关键词 媒体报道;Poincaré映射;全局渐近稳定
中图分类号 O193 文献标识码 A
Abstract Based on the classical epidemic model,by considering the threshold policy,a class of discontinuous epidemic model based on the media coverage was studied. The dynamical behaviors of the epidemic model under the threshold policy were qualitatively analyzed by using the theory of the differential equation with a discontinuous right-hand side in Filippov sense.In addition,the global asymptotical stability of a free equilibrium ,endemic equilibrium or pesudo-equilibrium was investigated by Poincaré maps as well.
Key words media coverage ;Poincaré map; global asymptotical stability
1 引 言
傳染病的流行对人类的生活甚至生存带来了极大的危害.媒体报道可通过降低疾病的传染率有效控制疾病的传播.近年来,媒体报道对疾病传播的影响越来越受到人们的关注[1-2],诸多学者开始研究媒体报道对流行病传播过程的影响[3-6].Collinson和Heffernan[3]研究了媒体报道对SEIR流感病毒的影响,陈瑶[4]等研究了带有媒体报道的H7N9传染病模型等.鉴于前人所做的工作[7-11],本文考虑了阈值策略,研究了在媒体报道影响下的Filippov传染病模型.
参考文献
[1] LIU Y,CUI J. The impact of media coverage on the dynamics of infectious dIsease[J]. International Journal of Biomathematics, 2008, 1(1):65-74.
[2] CUI J, SUN Y, ZHU H. The impact of media on the control of infectious diseases[J]. Journal of Dynamics and Differential Equations, 2008, 20(1):31-53.
[3] COLLINSON S,HEFFERNANJ M. Modelling the effects of media during an influenza epidemic[J]. Bmc Public Health, 2014, 14(1):1-10.
[4] 陈瑶,孙法国,胡新利,刘艳.带有媒体报道的H7N9传染病模型的研究[J].应用数学进展, 2015, 4(3):285-291.
[5] CUI J, TAO X, ZHU H. An SIS infection model incorporating media coverage[J]. Rocky Mountain Journal of Mathematics, 2008, 38(5):1323-1334.
[6] LIU R, WU J, ZHU H. Media/Psychological impact on multiple outbreaks of emerging infectious diseases[J]. Computational and Mathematical Methodds in Medicine, 2007, 8(3):153-164.
[7] BERNFELD S R. Differential equations with discontinuous righthand sides (A. F. Filippov)[J]. SIAM Review, 1990, 32(2):312-315.
[8] BACCIOTTI A, CERAGIOLI F. Stability and stabilization of discontinuous systems, and nonsmooth, lyapunov functions[J]. Esaim Control Optimisation and Calculus of Variations, 1999, 4(4):361-376.
[9] CLARKE F H. Optimization and nonsmooth analysis[M]. New York :Wiley, 1983.
[10]GUO Z, HUANG L, ZOU X. Impact of discontinuous treatments on an SIR disease model[J]. Mathematical Biosciences and Engineering, 2012, 9(1):97-110.
[11]WANG W. Backward bifurcation of an epidemic model with treatment[J]. Mathematical Biosciences, 2006,201(1/2):58-71.
[12]黄立宏,郭振远,王佳伏.右端不连续微分方程理论与应用[M].北京:科学出版社,2011.
[13]WANG J, ZHANG F, WANG L. Equilibrium, pseudoequilibrium and sliding-mode heteroclinic orbit in a Filippov-type plant disease model [J]. Nonlinear Analysis Real World Applications, 2016, 31:308-324.