李 轶,宫兴隆,于嘉琪,郭敬阳,曲壮壮,张 镇,易维明
·农业资源循环利用工程·
硼泥对猪粪厌氧发酵重金属铬及其光谱特性的影响
李 轶1,宫兴隆1,于嘉琪1,郭敬阳1,曲壮壮1,张 镇1,易维明2※
(1. 沈阳农业大学工程学院,沈阳 110866;2. 山东理工大学农业工程与食品科学学院,淄博 255049)
随着含有重金属添加剂饲料的使用,规模化养殖场畜禽粪便中重金属含量增加。为减少重金属的危害,该文以猪粪为发酵原料,重金属Cr为研究对象,硼泥为钝化剂,在接种物量为30%、TS为10%、温度为35 ℃、pH值为7的条件下进行40 d厌氧发酵试验。研究添加2.5%、5.0%、7.5% 3种比例的硼泥对猪粪厌氧发酵中重金属Cr的形态变化、有效态钝化效果及发酵前后沼渣光谱特征的影响,采用BCR连续提取法(European community bureau of reference sequential extraction)分析重金属Cr的形态变化,采用傅里叶红外光谱(Fourier transform infrared spectrometer, FTIR)对物料光谱特征的变化进行研究。结果表明:猪粪厌氧发酵过程中添加硼泥有利于重金属Cr从有效态转化为稳定态,当添加7.5%硼泥处理时有效态Cr转化为稳定态Cr的效果较好;猪粪在厌氧发酵过程中添加硼泥能提高重金属Cr的钝化效果,且随着硼泥添加量的增加,钝化效果越好;通过显著性分析,添加7.5%硼泥处理时钝化效果较好,达到63.79%,显著优于猪粪单独发酵和添加2.5%与5.0%硼泥的处理(<0.05);FTIR显示厌氧发酵后,沼渣中酰胺化合物、碳水化合物、蛋白质、脂肪族化合物等有机物分解减少,芳香族等腐殖质增加,且添加7.5%硼泥时有机物腐殖化程度最好。因此猪粪在厌氧发酵过程中添加适量硼泥,可以降低沼渣中重金属Cr的生物有效性,促进有机物转化为腐殖质,研究结果可为减少猪粪中重金属的有效性和提高厌氧发酵质量提供参考。
粪;厌氧发酵;重金属;硼泥;钝化;光谱分析
随着畜禽养殖业的迅猛发展[1],为提高饲料利用率、加快畜禽生长速度,重金属元素Cr、Cd、Cu、Zn等被添加到饲料中,但畜禽对饲料中重金属元素的利用率较低,大部分重金属随粪便排出,从而导致养殖场畜禽粪污中重金属含量较高[2-4]。随着这些含有重金属元素的畜禽粪便施入土壤,将会造成土壤重金属污染和农作物中毒,最终会通过食物链危及人体健康[5-7]。铬(Cr)既是人体必需的元素,又是一种有毒的元素。Cr3+对人体的伤害较小,Cr6+毒性则很强,过量吸入铬会引起呼吸道感染、支气管癌、消化道癌、肺癌等疾病[8]。
厌氧发酵是政府大力倡导的处理规模化养殖场畜禽粪便的方式[9]。在畜禽粪便厌氧发酵过程中添加钝化剂能在一定程度上减少重金属的危害[10]。畜禽粪便堆肥处理过程重金属钝化研究的较多,如Chen等研究竹炭的添加对猪粪堆肥过程中重金属的影响,发现猪粪与9%竹炭的共同堆肥可显著降低Cu(35%)和Zn(39%)的流动性[11]。Wang等的研究也表明膨润土和生物炭在猪粪堆肥过程中会降低Cu和Zn的生物有效态的含量占比[12]。另外,有研究指出,猪粪处理过程中重金属钝化与物料中有机物的降解和腐殖质的形成具有一定的相关性[13]。腐殖质是猪粪发酵过程中有机物腐殖化的产物,具有强吸附性和高稳定性[14]。其中包含大量的羧基、羰基等官能团与重金属发生吸附络合反应,有助于降低重金属的生物有效性[15]。李轶等表明在猪粪厌氧发酵中添加海泡石促进了物料的腐殖化程度,提高了重金属Cd的钝化,且大部分的Cd存在于腐殖质中[16]。
近几年现代光谱学技术得到了快速发展。元素分析、红外/紫外/荧光光谱分析、核磁共振分析等技术常被用于分析畜禽粪便处理过程中物料有机质的结构变化特征。其中利用傅里叶红外光谱法(FTIR)研究有机物结构变化具有测量所需样品量小、灵敏度高、测量速度快等优点[17]。Vergnoux等研究表明FTIR可以反映出堆肥过程中多糖、脂肪等有机物的减少及芳香结构的增加,可为研究堆肥中有机成分的转化提供有利证据[18]。李荣华等通过FTIR等分析方法研究猪粪堆肥样品中的光谱特性,均指出在猪粪堆肥处理中添加钝化剂可以促进有机物降解并提高堆肥的腐殖化程度[19-20]。但是关于添加钝化剂在畜禽粪便厌氧处理对重金属的影响报道较少,而且厌氧发酵前后有机物的结构变化对重金属钝化的影响研究也相对较少。因此,本试验采用BCR连续提取法与FTIR技术相结合的方法,研究不同比例硼泥对猪粪厌氧发酵前后重金属Cr的形态变化和物料光谱特性的影响,以期揭示重金属钝化与有机物腐殖化程度的关系,为猪粪厌氧发酵后沼渣的安全合理利用提供科学依据和技术支撑。
新鲜猪粪取自于辽宁省沈阳东陵郊区养猪场,接种物取自于沈阳东陵郊区正常运行的户用沼气池,猪粪和接种物取回后放置于实验室驯化。硼泥,灰白色,粉末状固体,具有较好的可塑性,pH值为9.5,主要化学组成为MgO、SiO2、Fe2O3、B2O3等[21]。表1为猪粪主要化学成分表。
表1 猪粪主要成分表
本试验以新鲜猪粪为发酵原料,在温度35 ℃,接种物量30%,TS为10%,pH值为7.0的条件下,进行周期为40 d的厌氧发酵试验[22]。研究硼泥不同添加量对猪粪厌氧发酵前后重金属形态分布特征以及沼渣光谱特征的影响。部分研究结果显示[23-24],相比于其他浓度,添加量为2.5%以上的钝化剂对重金属钝化效果普遍较好。Guo等指出随着钝化剂投加量的增大,重金属的吸附率逐渐增大,并趋于稳定。但继续加大投量,吸附率增加不明显[25]。因此考虑到钝化剂添加量对重金属钝化效果及经济性,参照堆肥处理畜禽粪便效果较好的添加比例,硼泥添加量为干物质质量分数的2.5%、5%、7.5%。试验设置4个处理组,每组处理重复3次,试验结果取平均值。4个试验处理为,T1:以新鲜猪粪为发酵原料,不添加钝化剂(CK);T2:以新鲜猪粪为发酵原料,添加钝化剂硼泥,添加比例为干物质量的2.5%;T3:以新鲜猪粪为发酵原料,添加5.0%硼泥;T4:以新鲜猪粪为发酵原料,添加7.5%硼泥。
采用自行设计的厌氧发酵装置。由发酵瓶、集气瓶和集水瓶3部分组成。发酵瓶和集气瓶采用1L的广口瓶,有效容积为0.7 L,集水瓶采用1 L的细口瓶。发酵瓶和集气瓶的瓶口用橡胶塞塞紧,通过胶皮管连接,瓶口及胶皮管接头处密封,保证良好的厌氧环境。将装有发酵原料的发酵瓶放入温度为35 ℃的恒温水浴锅中进行厌氧发酵。试验装置如图 1所示。
1.恒温水浴锅 2.发酵瓶 3.集气瓶 4.集水瓶 5.导气管 6.三通管 7.止水夹 8.排水管
沼液采集:取上清液,离心处理后测得重金属形态含量。沼渣的采取:经过滤取出沼渣,用去离子水洗涤2~3次,离心后的沉淀物在40 ℃条件下烘干,研磨并通过100目尼龙筛,将获得的固体样品用于测重金属形态含量。猪粪中TS/VS采用质量法测量;总磷采用硫酸-硝酸消煮-钒钼黄比色法;总钾采用火焰光度计法;总氮采用凯氏定氮法;重金属形态含量采用分级提取法和原子吸收分光光度计测定[26];物料光谱特性采用傅里叶红外光谱法检测。
不同形态重金属的可移动性和生物可利用性不同,生物毒性也不同[27]。1987年欧共体标准司提出的用于评估和协调重金属元素形态的BCR法,将重金属形态按生物有效性的大小顺序分为可交换态>可还原态>可氧化态>残渣态[28]。在这些形态中,可交换态、可还原态进入环境后容易迁移转化,比较容易被植物吸收利用,为生物有效态。因此这2种形态的百分量之和的大小可以直接影响重金属的生物有效性;而可氧化态和残渣态的百分含量之和大小可以用来判定重金属元素的稳定性[29]。猪粪厌氧发酵前后各处理沼渣中重金属Cr各形态变化及有效态变化如表2、图2所示。
表2 猪粪添加硼泥厌氧发酵前后沼渣中重金属Cr形态变化
注:T1为对照组,T2为猪粪+2.5%硼泥,T3为猪粪+5.0%硼泥,T4为猪粪+7.5%硼泥,下同。
Note: T1is control group, T2is manure+2.5% boron mud, T3is manure+5.0% boron mud, T4is manure+7.5% boron mud, same as below.
图2 猪粪添加硼泥厌氧发酵前后沼渣中重金属Cr有效态变化
如表2、图2所示,猪粪单独厌氧发酵(CK)前猪粪中重金属Cr以残渣态(67.03%)为主,有效态Cr的含量占比为25.06%。发酵结束后,可交换态、可氧化态Cr含量占比降低,可还原态、残渣态含量占比增加。有效态重金属Cr的含量占比为19.00%。厌氧发酵后重金属Cr的有效态降低,稳定态Cr增加,表明厌氧发酵处理能有效减少猪粪中重金属Cr的生物有效性和流动性。
由表2及图2可知,厌氧发酵前猪粪中重金属Cr均以残渣态为主,猪粪经厌氧发酵,可交换态、可还原态、可氧化态Cr含量降低,残渣态Cr增加。发酵结束后添加不同比例硼泥处理中重金属Cr有效态含量占比均有所下降,下降幅度变化由大到小的顺序为:猪粪+7.5%硼泥(14.98百分点)>猪粪+5.0%硼泥(13.40百分点)>猪粪+2.5%硼泥(11.33百分点)>CK(6.06百分点),即猪粪添加硼泥处理重金属Cr有效态下降幅度均高于对照组,且随着硼泥添加比例的增加,重金属Cr有效态含量占比依次降低。说明猪粪厌氧发酵过程中添加硼泥有利于重金属Cr从生物有效态转化为稳定态。当硼泥添加量为7.5%时,重金属Cr从有效态转化为稳定态的效果相对较好,可达到14.98%。
有效态钝化效果可以直观的反映有效态重金属的钝化强弱。目前尚无标准的重金属钝化效果检测方法,现普遍采用的方法是通过计算发酵前后有效态含量占比进而得到钝化效果[30]。具体的计算公式为:有效态的钝化效果=(发酵前有效态含量占比-发酵后有效态含量占比)/发酵前有效态含量占比×100%。图3是猪粪厌氧发酵各处理重金属Cr有效态钝化效果。
图3 各处理组沼渣中重金属Cr有效态钝化效果
如图3所示,猪粪添加硼泥厌氧发酵结束后重金属Cr有效态钝化效果由高到低依次为:猪粪+7.5%硼泥(63.79%)>猪粪+5.0%硼泥(55.38%)>猪粪+2.5%硼泥(44.32%)>CK(24.17%)。通过对重金属Cr的有效态钝化效果进行方差分析表明,添加硼泥对猪粪厌氧发酵过程中重金属Cr的有效态钝化效果有显著影响(<0.05),说明在添加硼泥有利于重金属Cr有效态的钝化。通过LSD多重比较分析结果表明,猪粪添加7.5%硼泥处理对重金属Cr有效态钝化效果显著高于对照组和添加2.5%与5.0%硼泥处理(<0.05),添加5.0%硼泥处理的钝化效果显著高于对照组和添加2.5%硼泥的处理(<0.05)。从上述试验结果及显著性分析结果可以得出:猪粪厌氧发酵添加硼泥可显著提高重金属Cr的钝化效果,且硼泥添加比例越大,钝化效果越高。猪粪添加7.5%硼泥处理对重金属Cr有效态的钝化效果相对较好,可达到63.79%。
厌氧发酵前后沼渣的红外光谱的变化情况如图4所示,FTIR特征吸收带归属见表3。根据相关报告,3 408~3 450 cm-1波段表示羟基伸缩振动;2 850~2 922 cm-1波段代表甲基(-CH3)和亚甲基(-CH2)的不对称和对称拉伸;1 600~1 653 cm-1的吸收带可能是由于苯环、烯烃上的-C=C-或羧酸、酰胺上的-C=O-的拉伸振动造成的;1 400~1 430 cm-1的条带对应于羧酸、木质素的-OH、-CH2的弯曲振动、-COO-的对称振动;1 105~1 160 cm-1处的条带对应于多糖类C-O-C、C-O的伸缩振动[31-33]。
图4 猪粪添加硼泥厌氧发酵前后红外光谱图
表3 FTIR特征吸收带归属
由图4可知,猪粪厌氧发酵前后各处理物料具有较为相似的光谱特征,仅在相对强度上存在一些差异。这可能是因为虽然硼泥的添加量不同,但其主要发酵原料仍是猪粪,这一结果与李荣华的研究结果一致[34]。其中,强度变化较为明显的几处具有代表性的峰值分别是3 408~3 450、2 850~2 922和1 600~1 653 cm-1。
结合图4及表3可知,在3 408~3 450 cm-1,即碳水化合物、酰胺化合物、蛋白质的-OH伸缩振动峰处,厌氧发酵后各处理在该处吸收峰的相对强度均有所降低。这表明猪粪中的碳水化合物、蛋白质和酰胺化合物逐渐分解,导致羟基基团不断减少,物料的内部环境发生了变化。厌氧发酵后各处理在该处吸收峰的强度降幅从大到小依次为7.5%硼泥、5.0%硼泥、2.5%硼泥、CK。表明添加硼泥厌氧发酵会降低物料中蛋白质、糖类等有机物的含量。
在2 850~2 922 cm-1,即脂肪族化合物和碳水化合物亚甲基中C-H伸缩振动峰处相对强度也有所降低。表明物料中碳水化合物和脂肪族化合物等有机物在微生物的作用下发生矿化、挥发或代谢等,导致其含量减小。这一特征与厌氧发酵过程中将复杂有机物水解产生小分子物质的过程一致。其中,添加硼泥处理在该处吸收峰的强度均低于猪粪单独发酵处理,说明硼泥可以促进物料中脂肪族化合物和碳水化合物的分解。
在1 600~1 653 cm-1处,即羧酸类的C=O伸缩、-COO-伸缩以及芳香族和烯烃的C=C伸缩、N-H伸缩振动峰,厌氧发酵后各处理组在该处吸收峰的相对强度均有所提高。这表明厌氧发酵过程中随着纤维素、木质素等有机物料的降解,木质素残体与其他分解生成的有机中间产物聚合生成腐殖质,导致芳香环类、烯烃类等腐殖质含量相对增加。与对照组相比,添加不同比例硼泥处理在1 600~1 653 cm-1处吸收峰强度均有所增加。综上,猪粪发酵过程中添加硼泥可以促进大分子有机物的分解和腐殖质的生成。其中添加7.5%硼泥处理物料中有机物腐殖化程度最好。
另外,在1 647 cm-1(芳香族碳)处的特征峰强度与3 435 cm-1(碳水化合物碳),2 974 cm-1(脂肪族碳),1 406 cm-1(羧酸碳)和1 112 cm-1(多糖碳)的比值可以表示物料中有机物的结构变化,评价猪粪厌氧发酵有机物腐殖化的程度[35]。比值越高表明有机物中碳水化合物、脂肪族化合物、多糖类物质含量减少,芳香族碳含量增加,物料中有机物腐殖化程度越高。厌氧发酵前后各处理的特征参数如表4所示,其中a是芳香族碳/碳水化合物碳,b是芳香族碳/脂肪族碳,c表示芳香族碳/羧酸碳,d代表芳香族碳/多糖碳。
由表4可知,厌氧发酵前物料中a值为0.592,猪粪单独发酵组中a值为0.622,添加硼泥处理组中a值为0.625~0.637,表明猪粪厌氧发酵过程中添加硼泥有利于碳水化合物向芳香族化合物的转化;发酵前物料中b值为0.819,猪粪单独发酵处理中b值为1.115,与对照组相比,添加不同比例硼泥处理中的b值均增加,表明添加硼泥促进猪粪中脂肪族化合物转化为芳香族化合物;猪粪厌氧发酵前物料中c值为1.067,发酵后各处理组中c值从大到小依次为7.5%硼泥、5.0%硼泥、2.5%硼泥、对照组;发酵前物料中d值为0.941,猪粪单独发酵处理中d值为1.380,随着硼泥添加比例的提高,d值依次为1.054、0.962、1.380。说明猪粪厌氧发酵过程中羧酸盐、多糖等有机物质减少,芳香族化合物含量增加。综上所述,以上特征参数表明,猪粪厌氧发酵后物料中脂肪族化合物、碳水化合物等有机物减少,芳香环类物质相对增加,有机物腐殖化程度有所提高。而添加硼泥处理可以促进有机物的腐殖化程度,且以添加7.5%硼泥为最佳。
表4 各处理的特征参数比值
试验结果表明,猪粪厌氧发酵过程中添加硼泥处理促使重金属Cr有效态含量显著下降,重金属Cr钝化效果明显提高。通过分析上述试验结果,可从以下方面加以理解:1)硼泥的碱性较强(pH值大于10),添加硼泥会导致物料中的pH值显著上升,可以促进重金属形成氢氧化物沉淀[36]。2)硼泥中的无机矿物也是促进猪粪中重金属Cr有效态降低的重要因素。硼泥的主要化学组成是MgO、CaO、B2O3、Al2O3等[37]。MgO为碱性氧化物,与水结合可缓慢形成MgOH,可以有效沉淀和吸附重金属Cr。而CaO和Al2O3虽然在硼泥中含量较低,但对重金属也具有良好的沉淀和吸附作用。
本试验使用傅里叶红外光谱法(FTIR),通过特定波段吸收峰位置来确定厌氧发酵前后物料中官能团变化信息,反映发酵过程中有机物和腐殖质的变化情况[38-39]。研究结果表明,硼泥添加量越大,厌氧发酵后沼渣中有机物腐殖化程度越高,重金属Cr的钝化效果越好。这可能是因为硼泥是一种多孔的结构,添加硼泥提高了物料的孔隙率,为微生物分解碳水化合物、脂肪族、多糖等有机物提供更适宜的环境和更多的附着位点,促进了猪粪中有机物的分解,增加腐殖质浓度,有利于腐殖质吸附固定更多的重金属Cr,降低重金属Cr的生物有效性,提高了重金属的钝化效果。就本试验而言,添加7.5%硼泥处理物料中有机物腐殖化程度最高,重金属Cr钝化效果最好。
硼泥是提取硼砂等硼产品后排放的固体废渣。大量的硼泥堆置,不但占用大量土地,而且对土壤、水体及大气环境产生严重危害。由于硼泥不含重金属和其它有毒有害物质,而且具有较高阳离子交换容量,较大的比表面积和多孔性质,已被广泛用于处理重金属污染等方面[40-41]。从硼泥的来源考虑,每生产1 t硼砂就需排出约4~5 t的硼泥[42]。随着硼砂产量的逐年增加,硼泥的产量也随之增加,不仅使硼泥价格远小于其他钝化材料,也为硼泥的利用提供了原料保证。因此,在猪粪发酵过程中添加硼泥促进腐殖质形成来吸附固定重金属Cr,对重金属Cr进行钝化,降低重金属Cr的生物有效性是切实可行的。
1)猪粪厌氧发酵过程中添加硼泥有利于有效态Cr转化为稳定态Cr;硼泥添加量增加,有效态Cr含量占重金属Cr总含量的比例越低。
2)猪粪厌氧发酵过程中添加硼泥有利于提高重金属Cr的钝化效果,添加7.5%硼泥处理时钝化效果较好,达到63.79%;通过显著性分析,猪粪添加硼泥处理对重金属Cr钝化效果差异显著(0.05);猪粪添加7.5%硼泥处理时钝化效果优于其他处理组,且差异显著(<0.05)。因此猪粪厌氧发酵过程中添加硼泥可降低重金属的污染风险。
3)傅里叶红外光谱显示,猪粪厌氧发酵后各处理沼渣中有机物分解减少,腐殖质含量增多。在硼泥添加量为7.5%时,有机物的腐殖化程度较好。
[1] 牛姣艳. 畜禽养殖场环境污染与控制[J]. 养殖与饲料,2019(1):121-123. Niu Jiaoyan. Environmental pollution and control of livestock and poultry farms[J]. Culture and Feed, 2019(1): 121-123. (in Chinese with English abstract)
[2] Wang T, Xue Y J, Zhou M, et al. Comparative study on the mobility and speciation of heavymetals in ashes from co-combustion of sewage sludge/dredged sludge and rice husk[J]. Chemosphere, 2017, 169: 162-170.
[3] Untea A, Criste R, Panaite T, et al. Effect of the dietary oregano () on Cu and Zn balance in weaned piglets[J]. Trace Elem. Med. Biol, 2011, 25: 35-40.
[4] 温沁雪,曹永森,陈志强. 猪粪堆肥过程中金霉素去除及重金属形态变化[J]. 环境科学,2017,38(10):4405-4411. Wen Qinxue, Cao Yongsen, Chen Zhiqiang. Removal of chlortetracycline and changes in heavy metal form during composting of pig manure[J]. Environmental Science, 2017, 38(10): 4405-4411. (in Chinese with English abstract)
[5] 王湧,曹冬梅,孙安权. 畜禽粪便中重金属污染现状及控制[J]. 猪业科学,2016,33(5):48-49. Wang Yong, Cao Dongmei, Sun Anquan. Status and control of heavy metal pollution in livestock manure[J]. Pig Industry Science, 2016, 33(5): 48-49. (in Chinese with English abstract)
[6] 赵睿,吴智书,罗阳,等. 猪粪与农田土壤中重金属累积污染的相关分析[J]. 土壤,2017,49(4):753-759. Zhao Rui, Wu Zhishu, Luo Yang, et al. Correlation analysis of cumulative pollution of heavy metal in pig manure and farmland soil[J]. Soil, 2017, 49(4): 753-759. (in Chinese with English abstract)
[7] 张树清,张夫道,刘秀梅,等. 高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J]. 中国农业科学,2006,39(2):337-343. Zhang Shuqing, Zhang Fudao, Liu Xiumei, et al. Effects of high temperature composting on antibiotic degradation and heavy metal passivation in livestock manure[J]. Scientia Agricultura Sinica, 2006, 39(2): 337-343. (in Chinese with English abstract)
[8] 行文珍. 重金属铅、铬对泥鳅的组织学损伤与遗传毒性效应[D]. 延边:延边大学,2016. Xing Wenzhen. Histological Damage and Genotoxic Effects of Heavy Metal Lead and Chromium on Loach[D]. Yanbian: Yanbian University, 2016. (in Chinese with English abstract)
[9] 国家发展和改革委员会. 国家发展改革委、农业部关于印发《全国农村沼气发展“十三五”规划》的通知[Z]. 2017-01-25.
[10] 张辉,陈梅,马群,等. 钝化剂对猪粪厌氧发酵产气特性及重金属含量的影响[J]. 中国沼气,2017,35(2):36-40. Zhang Hui, Chen Mei, Ma Qun, et al. Effects of adding passivator on pig manure biogas production and the heavy metal content[J]. China Biogas, 2017, 35(2): 36-40. (in Chinese with English abstract)
[11] Chen Y X, Huang X D, Han Z Y, et al. Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting[J]. Chemosphere, 2010, 78: 1177-1181.
[12] Wang Q, Li R, Cai H, et al. Improving pig manure composting efficiency employing Ca-bentonite[J]. Ecol. Eng. 2016, 87: 157-161.
[13] Liu Y, Ma L, Li Y, et al. Evolution of heavy metal speciation during the aerobic composting process of sewage sludge[J]. Chemosphere, 2007, 67(5): 1025-1032.
[14] 卜贵军,于静,邸慧慧,等. 鸡粪堆肥有机物演化对重金属生物有效性影响研究[J]. 环境科学,2014,35(11):4352-4358. Bu Guijun, Yu Jing, Di Huihui, et al. Influence of organic matter evolution during composting on the bioavailability of heavy metals[J]. Environmental Science, 2014, 35(11): 4352-4358. (in Chinese with English abstract)
[15] 熊雄,李艳霞,韩杰,等. 堆肥腐殖质的形成和变化及其对重金属有效性的影响[J]. 农业环境科学学报,2008,27(6):2137-2142. Xiong Xiong, Li Yanxia, Han Jie, et al. Formation and change of compost humus and its effect on the availability of heavy metals[J]. Journal of Agro- Environment Science, 2008, 27(6): 2137-2142. (in Chinese with English abstract)
[16] 李轶,曲壮壮,巩俊璐,等. 海泡石对猪粪秸秆厌氧发酵产物中Cd的钝化效果研究[J]. 农业工程学报,2018,34(增刊):1-6. Li Yi, Qu Zhuangzhuang, Gong Junlu, et al. Passivation effect of Cd by sepiolite in anaerobic fermentation products with pig manure and straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp): 1-6. (in Chinese with English abstract)
[17] 孙向平,李国学,肖爱平,等. 添加不同比例玉米秸秆对猪粪高温堆肥过程中胡敏酸的结构组成及红外光谱特性影响分析[J]. 光谱学与光谱分析,2014,34(9):2413-2418. Sun Xiangping, Li Guoxue, Xiao Aiping, et al. Analysison impact of composting with different proportions of corn stalks and pig manure on humic acid fractions and IR spectral feature[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2413-2418. (in Chinese with English abstract)
[18] Vergnoux A, Guiliano M, Le Dreau, et al. Monitoring of the evolution of an industrial compost and prediction of some compost properties by NIR spectroscopy[J]. Science of the Total Environment, 2009, 407(7): 2390-2403.
[19] 李荣华,张广杰,王权,等. 添加矿物质对猪粪好氧堆肥中有机物降解的影响[J]. 农业机械学报,2014,45(6):190-198. Li Ronghua, Zhang Guangjie, Wang Quan, et al. Effect of minerals on the degradation of organic matter in pig manure aerobic compost[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 190-198. (in Chinese with English abstract)
[20] Zhang J, Lü F, Shao L, et al. The use of biochar -amended composting to improve the humification and degradation of sewage sludge[J]. Bioresource Technology, 2014, 168: 252-258.
[21] 杨梅,陈启凡,吴晓杰. 盐酸法浸取硼泥制备精制氯化镁的研究[J]. 沈阳师范大学学报:自然科学版,2016,34(2):144-147. Yang Mei, Chen Qifan, Wu Xiaojie. Study on preparation of refined magnesium chloride by leaching boron mud by hydrochloric acid method[J]. Journal of Shenyang Normal University (Natural Science Edition), 2016, 34(2): 144-147. (in Chinese with English abstract)
[22] 李轶,曲壮壮,刘艳杰,等. 钝化剂对猪粪厌氧发酵沼渣中As的钝化效果及工艺优化[J]. 农业工程学报,2018,34(12):245-250. Li Yi, Qu Zhuangzhuang, Liu Yanjie, et al. Passivating effect of passivating agent on heavy metal as in biogas residues from anaerobic fermentation of pig manures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 245-250. (in Chinese with English abstract)
[23] 何增明,刘强,谢桂先,等. 好氧高温猪粪堆肥中重金属砷、铜、锌的形态变化及钝化剂的影响[J]. 应用生态学报,2010,21(10):2659-2665. He Zengming, Liu Qiang, Xie Guixian, et al. Changes of heavy metals form during aerobic high temperature composting of pig manure and effects of passivators[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2659-2665. (in Chinese with English abstract)
[24] 吕兑安. 猪粪堆肥过程中重金属形态变化特征及钝化技术研究[D]. 长春:中国科学院东北地理与农业生态研究所,2014. Lü Duian. Study on Morphological Changes and Passivation Techniques of Heavy Metals During Composting of Pig Manure[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2014. (in Chinese with English abstract)
[25] Guo Z, Li Y, Zhang S, et al. Enhanced sorption of radiocobalt from water by Bi(III) modified montmo-rillonite: A novel adsorbent[J]. Journal of Hazardous Materials, 2011, 192(1): 168-175.
[26] Wang Chao, Hu Xin, Chen Maolin, et al. Total concentrations and fractions of Cd, Cr, Pb, Cu, Ni and Zn in sewage sludge from municipal and industria wastewater treatment plants[J]. Journal of Hazardous Materials, 2005, 119(1/2/3): 245-249.
[27] 孙刚忠,王荣,曹霞,等. 抗铅、镉菌株对土壤铅、镉生物有效性的影响[J]. 环境科学与管理,2011(11):103-107. Sun Gangzhong, Wang Rong, Cao Xia, et al. Effects of lead and cadmium-resistant strains on bioavailability of lead and cadmium in soil[J]. Environmental Science and Management, 2011(11): 103-107. (in Chinese with English abstract)
[28] Singh J, Kalamdhad A S. Reduction of bioavailability and leachability of heavy metals during vermicom-posting of water hyacinth. Environ. Sci[J]. Pollut Res, 2013(20): 8974-8985.
[29] 周东兴,李晶,宁玉翠,等. 蚯蚓堆制猪粪过程中Cu、Zn形态变化与关键酶活性间关系的研究[J]. 农业环境科学学报,2019,38(6):1349-1356. Zhou Dongxing, Li Jing, Ning Yucui, et al. Relationship between Cu and Zn speciations and key enzyme activity in process of vermicomposting pig manure[J]. Journal of Agro-Environment Science, 2019, 38(6): 1349-1356. (in Chinese with English abstract)
[30] 张荣春. 一种有机堆肥的重金属钝化效果的检测方法:109856229 [P].2019-06-07.
[31] Khawas P, Deka S C. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment[J]. Carbohydrate Polymers, 2016, 137: 608-616.
[32] Li P, Cai D, Luo Z, et al. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production[J]. Bioresour Technol, 2016, 206(19): 86-92.
[33] Ma L, Cui Y, Cai R, et al. Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob[J]. Bioresource Technology, 2015, 180: 1-6.
[34] 李荣华. 添加重金属钝化剂对猪粪好氧堆肥的影响研究[D].杨凌:西北农林科技大学,2013. Li Ronghua. Effect of Adding Heavy Metal Passivation Agent on Aerobic Composting of Pig Manure[D]. Yangling: Northwest A&F University, 2013. (in Chinese with English abstract)
[35] 任秀娜,王权,赵军超,等. 添加钙基膨润土对猪粪堆肥中水溶性有机物光谱特征的影响[J]. 光谱学与光谱分析,2018,38(6):1856-1862. Ren Xiuna, Wang Quan, Zhao Junchao, et al. Effects of calcium-based bentonite on spectral characteristics of water-soluble organic compounds in pig manure composting[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1856-1862. (in Chinese with English abstract)
[36] 叶赛克. Cd污染农田土壤钝化剂的筛选及修复效果研究[D]. 扬州:扬州大学,2017. Ye Saike. Study on Screening and Remediation Effect of Cd Contaminated Farmland Soil Passivation Agent[D]. Yangzhou: Yangzhou University, 2017. (in Chinese with English abstract)
[37] 李晓冰,尹微,江志阳,等. 硼泥生物有机-无机生态肥肥效试验总结[J]. 化肥工业,2014,41(5):72-76. Li Xiaobing, Yin Wei, Jiang Zhiyang, et al. Summary of fertilization experiments for bio-organic-inorganic ecological fertilizers[J]. Chemical Fertilizer Industry, 2014, 41(5): 72-76. (in Chinese with English abstract)
[38] 张辉. 秸秆对猪粪厌氧发酵重金属钝化的影响研究[D]. 沈阳:沈阳农业大学,2018. Zhang Hui. Effect of Straw on Heavy Metal Passivation of Anaerobic Fermentation of Pig Manure[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese with English abstract)
[39] Zhu W, Yao W, Shen X, et al. Heavy metal and δ13C value variations and characterization of dissolved organic matter(DOM) during vermicomposting of pig manure amended with 13C-labeled rice straw[J]. Environmental Science and Pollution Research, 2018.
[40] 李冉,孟海波,赵立欣,等. 微生物和生物炭联用对猪粪堆肥后重金属Pb和Cd的钝化效果[J]. 农业工程学报,2018,34(23):164-169. Li Wei, Meng Haibo, Zhao Lixin, et al. Passivation effect of microbial and biochar combined with heavy metals Pb and Cd after composting pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 164-169. (in Chinese with English abstract)
[41] 李慧,孙青,吴翠平,等. 用硼泥制备多孔二氧化硅及其性能表征[J]. 硅酸盐通报,2014,33(8):2124-2127. Li Hui, Sun Qing, Wu Cuiping, et al. Preparation of porous silica from boron mud and characterization of its properties[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(8): 2124-2127. (in Chinese with English abstract)
[42] 吕品,刘景泽,于淑伟. 硼泥的综合利用[J]. 辽宁化工,2004(6):342-344. Lü Pin, Liu Jingze, Yu Shuwei. Comprehensive utilization of boron mud[J]. Liaoning Chemical Industry, 2004(6): 342-344. (in Chinese with English abstract)
Effects of boron mud on anaerobic fermentation of heavy metal chromium and its spectral characteristics in pig manure
Li Yi1, Gong Xinglong1, Yu Jiaqi1, Guo Jingyang1, Qu Zhuangzhuang1, Zhang Zhen1,Yi Weiming2※
(1.,,110866,; 2.,,255049,)
In recent years, with the development of Chinese animal husbandry, some heavy metals have been added to animal feed to speed up the growth of livestock and poultry and prevent diseases. But most heavy metals can not be absorbed and digested, resulting in increasingly serious pollution problems of heavy metals in livestock and poultry manure, which seriously affects the resource utilization of livestock and poultry manure. Anaerobic fermentation is an effective approach to deal with manure pollution. In this paper, using pig manure as the processing object, the heavy metals Cr as the research object, by adding different amounts of boron mud (boron content is 2.5%, 5%, 7.5% of dry matter content) The anaerobic fermentation period is 60 days, fermentation temperature is of 35℃, inoculum quantity is of 30% fermentation raw material, total solid is of 10% and pH value is of 7. The speciation analysis of heavy metal Cr are analyzed by BCR sequential extraction and the spectral characteristics of biogas residue before and after anaerobic fermentation are studied by Fourier transform infrared spectroscopy (FTIR), effects of different amount of boron on morphological changes, effective passivation effect and spectral characteristics before and after anaerobic fermentation residue. The aim of this study is to provide a scientific basis for the treatment of heavy metals in livestock and poultry manure. Through the above experimental research, the following main conclusions are drawn: 1) After the end of anaerobic fermentation, the effective content of heavy metal Cr in each treatment decreased. The effective state of heavy metal Cr decreased by 6.06 percentage points in pig manure alone, and the effective content of heavy metal Cr in pig manure added boron decreased by 11.33 percentage points, 13.40 percentage points and 14.98 percentage points, respectively. It is indicated that the anaerobic fermentation of pig manure and boron is beneficial to convert the heavy metal Cr from the effective state to the stable state. With the increase of the added amount of boron, the proportion of the effective Cr content to the total content of heavy metals is lower. The proportion of heavy metal Cr in the treatment of pig manure added with 7.5% boron is relatively large. 2) The passivation effect of the effective form of heavy metal Cr in pig manure alone was 24.17%, and the effective passivation effect of heavy metal Cr in pig manure was 44.32%, 55.38% and 63.79%, respectively. It is indicated that the anaerobic fermentation of pig manure added boron is beneficial to improve the passivation effect of heavy metal Cr. With the increase of boron addition, the passivation effect of heavy metal Cr is better. The significant analysis showed that the anaerobic fermentation of pig manure added boron had significant difference in the passivation of heavy metal Cr (<0.05). The passivation effect of pig manure added with 7.5% boron was better than other treatment groups, and the difference was significant (<0.05). 3) Fourier infrared spectroscopy showed that the materials of each treatment group had similar spectral characteristics before and after anaerobic fermentation. After anaerobic fermentation, the relative intensity of the absorption peaks of the biogas residue of each treatment group decreased at 3 408-3 450 and 2 850-2 922 cm-1, indicating that the organic matter such as amide compound, carbohydrate, protein, and aliphatic compound in the biogas residue were decomposed and reduced. The absorption peak intensity increased, indicating that the olefins, aromatic compounds and other substances in the biogas residue increased. The addition of boron during the anaerobic fermentation of pig manure is beneficial to the reduction of organic matter content, the increase of humus content, and the humification degree of organic matter is better when the amount of boron sludge is 7.5%. Adding an appropriate amount of heavy metal passivating agent to the anaerobic fermentation of pig manure can reduce the effectiveness of heavy metals in the biogas residue and the risk of heavy metal pollution.
manures; anaerobic fermentation; heavy metal; boron; passivation; spectra
李 轶,宫兴隆,于嘉琪,郭敬阳,曲壮壮,张 镇,易维明. 硼泥对猪粪厌氧发酵重金属铬及其光谱特性的影响[J]. 农业工程学报,2019,35(24):255-261. doi:10.11975/j.issn.1002-6819.2019.24.030 http://www.tcsae.org
Li Yi, Gong Xinglong, Yu Jiaqi, Guo Jingyang, Qu Zhuangzhuang, Zhang Zhen,Yi Weiming. Effects of boron mud on anaerobic fermentation of heavy metal chromium and its spectral characteristics in pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 255-261. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.030 http://www.tcsae.org
10.11975/j.issn.1002-6819.2019.24.030
X713
A
1002-6819(2019)-24-0255-07
2019-07-14
2019-10-31
辽宁省自然基金面上项目(20170540813);沈阳市科技局课题(18-013-0-86)
李 轶,副教授,博士,主要从事新能源及农业生物环境工程技术研究。Email:yilisyau2000@163.com
易维明,教授,博士,主要从事生物新材料与新能源技术研究。Email:yiweiming@sdut.edu.cn
中国农业工程学会会员:易维明(E041200041S)