魏凯 林静 李明阳
摘要:中国跨海桥梁多建于近岸岛礁海域,桥址区的波浪要素随时空演变复杂。桥址区波高的准确推算对于桥梁结构设计和施工组织具有十分重要的意义。提出一种基于外海环境预报数据的近岸岛礁桥址区波高人工神经网络(ANN)推算模型,并以平潭海峡公铁两用大桥桥址海域为研究对象,运用ANN算法中常用的BP神经网络对外海海洋预报台提供的波高、风速数据以及在桥址区实测波高数据进行训练,建立二者之间的映射关系及ANN推算模型。为验证推算模型的可行性和有效性,运用上述模型对桥址区连续80d的海浪波高进行推算,通过对比前人模型和实测数据发现,推算波高和实测波高的变化趋势基本吻合,均方根误差满足预测要求,获得了理想的预测效果。研究表明,提出的波高ANN推算模型可以利用外海预报信息进行近岸岛礁桥址区的波高推算,且建模过程较为简单。
关键词:波高;人工神经网络;近岸岛礁桥址区;外海环境;跨海桥梁
中图分类号:TU528.41文献标志码:A 文章编号:2096-6717(2019)06-0089-06
中国跨海桥梁多建于风大浪高的近岸岛礁海域,在施工和运营期间常常面临恶劣的极端海洋环境。其中,波浪是影响跨海桥梁结构设计、施工安全和组织安排的关键环境要素之一。但是,与深水、开阔海域相比,近岸岛礁桥址区海床地形起伏多变,水深变化剧烈,波浪时空演变十分复杂。同时,中国海洋观测站大多分布于外海,与跨海桥梁所在的近岸岛礁区域距离较远,缺乏对近岸岛礁桥址区波高的长期观测,这大大增加了桥址区波浪高度(简称波高)预测的难度。因此,对近岸岛礁桥址区的波高模型开展研究具有重要的理论和工程实用价值。
中国《港口与航道水文规范》(JTS 145-2015)建议根据远海波高,通过规范中的浅化和折射系数来推算近岸波高。然而,Ti等通过对比近岸岛礁区域波高实测值和规范推算值发现,按规范法推算得到的波高值明显大于实测值。虽然,现场实测是研究近岸岛礁区域波高的有效手段,但周期长、花费大,难以大规模应用。因此,若能建立外海环境数据和桥址区海域波高的关系,则可以非常方便地根据外海环境推算桥址区波高。冯卫兵等根据外海深水的风浪关系推算外海的波高,再类推到工程区域的波高,研究了复杂地形条件下的波高特性。Ti等通过引入反应面法推导波高预测方程,利用外海数据进行桥址区波高推算。近年来,人工智能算法,特别是人工神经网络(Artificial NeuralNetwork,ANN)技术逐步在海洋预测中得以应用,例如,沿海港口结构的波浪反射系数预测、近岸波浪势能预测等。Deo等采用ANN算法进行波浪预测,并与自回归模型进行比较,发现自回归模型正确率略低于神经网络算法。Jain等在海洋工程神经网络的应用中表示,神经网络算法可以替代统计回归、时间序列分析等方法,且ANN算法更准确、高效、简单。
鉴于ANN算法的上述优势,本文提出基于外海海域风浪预报数据,运用ANN算法建立外海预报数据与桥址区海域实测数据的对应关系,进而进行桥址区波高推算的方法。以平潭海峡公铁两用大桥桥址海域为例,根据外海预报和桥址区實测数据,采用本文方法建立桥址区波高推算模型,并结合现场实测以及对比前人方法,验证上述模型的有效性。
1桥址区波高ANN推算模型
1.1ANN算法原理及方法
ANN是人工智能领域中一种重要的计算机算法,可以对人脑进行仿真模拟,建立一种类似神经元相互连接的网络模型,对信息进行处理和非线性转换。作为目前应用最为广泛和成熟的ANN算法之一,BP神经网络的主要特点是信号前向传递,误差反向传递。在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层。每一层的神经元状态只影响下一层神经元状态。如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阈值,从而使预测输出不断逼近期望输出。
根据文献[14-17],BP神经网络算法基本理论如下:
通过迭代计算确定网络连接权值ωij、ωjk及网络节点阈值a、b,使误差指标(本文的计算指标为均方误差)满足精度要求。
1.2推算模型建模流程
根据BP神经网络训练原理,近岸岛礁桥址区波高推算模型的建模流程主要包括:
1)外海、桥址区环境资料准备通过海洋预报台等收集外海海域预报数据(包括外海海域预报最小风级、最大风级、最小波高、最大波高、风向),通过在桥址区建立测站,对近岸岛礁桥址区海域波高数据进行实测。
2)输人数据选择根据外海海域预报数据和近岸岛礁桥址区实测数据,建立外海环境与近岸岛礁桥址区波高相关性关系。选择与桥址区波高数据相关性较强的外海环境数据作为输入数据,为桥址区海域海浪波高推算做准备。
3)数据预处理在使用样本数据训练之前,对样本数据进行预处理,即归一化。归一化处理指的是对网络输入和输出数据进行一定的映射变换,将其一一映射到[-1,1]的区间内。
4)BP神经网络训练
采用外海海域预报数据(下文中简称“外海海域预报值”)以及桥址区海域实测的波高数据(下文中简称“桥址海域实测值”),运用BP神经网络算法,对外海海域预报值和桥址海域实测值进行训练,建立二者之间的网络关系。
5)建立推算模型通过训练好的ANN,使用外海海域新的预报值,推算出桥址区海域的海浪波高(下文简称“桥址海域推算值”)。后期将桥址海域推算值和桥址海域新的实测值进行对比,判断推算的准确性。如果二者接近,则认定推算成功,模型可信;如果二者不接近,则需要在输入数据中补充新的观测数据,重新进行步骤3)~4)训练BP模型。
为实现上述算法,可利用Matlab软件内置的神经网络工具箱(Neural Net Toolbox),根据图1所示流程编写计算程序,使用工具箱提供的Premnmx和Postmnmx函数对输入数据进行预处理,基于输入数据训练神经网络,建立近岸岛礁桥址区波高推算模型。
选取平潭海峡公铁两用大桥所在的近岸岛礁海域(如图2所示)做为算例海域。目前,作者掌握的数据包含从2015年1月1日至2016年3月28日共计426d的外海波高和桥址区波高数据。其中,外海海域预报值来源于福建省海洋预报台网站(www.fjmf.gov.cn)提供的由闽中海域浮标测得的风级、日最大波高等数据。桥址区波高、风速数据则通过在平潭海峡公铁两用大桥6#施工平台附近(东经119.6度,北纬25.7度)建立测站实测得到,测试仪器及数据处理方法详见文献[5]。
2桥址区波高推算算例分析
2.1算例数据分析
图3和图4分别给出了近岸岛礁桥址海域实测日最大波高、闵中海域预报日最大波高以及预报风级的关系图。由图3、图4可知,桥址区实测日最大波高与外海预报最大波高及闽中海域预报风级都存在正相关关系。外海波高越大、预报风级越大,桥址区实测波高越大。但外海预报数据与实测波高散点图的离散度较大。如果仅仅利用简单的公式建立外海风、浪预报数据及桥址区波高的关系(图3、图4中实线所示),预测值的置信区间比较大,无法满足工程要求,必须借助其他复杂模型进行波高推算。
考虑到数据量有限,算例将首先采用2015年1月1日至2015年12月31日共346d的数据作为样本进行神经网络训练;ANN模型建立后,再采用该模型推算2016年1月1日至2016年3月28日共80d的桥址区日最大波高。
2.2BP神经网络训练
将外海海域每天的风级、风向和波高的大小即外海海域预报最小风级、最大风级、最小波高、最大波高、风向5个因素作为输入向量。近岸岛礁桥址区海域每天的最大波高作为网络的输出向量。
采用3层网络结构的BP网络,分别是输入层、隐含层、输出层。输入层的节点数量n=5;输出层的节点数量m=1。隐含层的节点数量l根据前人研究应满足
根据表1计算结果,当选取6个隐节点时,均方根误差最小,故文中BP神经网络设置6个隐节点。由于海浪的变化具有高度非线性,因此,BP网络的传递函数选为双曲正切S型函数Tansig函数和线性函数Purelin函数。
BP网络的训练过程是一个不断对实测值拟合的过程,每一次拟合都会产生一组训练值,网络计算出训练值和实测值的均方误差向着拟合均方误差减小的方向发展。最终,网络训练的均方误差为0.0162。图5为网络最终得到的训练值和实测值的关系图,从图中可以看出,网络训练值和实测值的变化趋势吻合良好,训练成功。
3方法验证与讨论
利用训练好的ANN推算模型,将2016年1月1日至2016年3月28日共80d的福建省海洋预报台外海预报数据(波高、风速)输入到训练好的ANN中进行推算,得到桥址区80d的波高,见图6。
Deo等提出如下波高ANN推算模型:该模型采用3层BP神经网络,以目标海域两个连续的3h平均风速作为输入层,以桥址區波高和波浪周期作为输出层,采用四节点隐含层对目标海域波高、周期进行推算。为了对比验证本文模型的有效性,作者根据文献[15]方法,采用桥址区实测的风速数据,推算桥址区80d的波高,如图6所示。
图6对比了本文模型、文献[15]模型推算波高和实测波高随时间的变化规律。由图6可知,本文和文献[15]方法推算的波高与对应实测波高的变化趋势吻合良好。但当实测波高较大时,推算结果较实测值偏小。但相比文献[15]方法,本文模型更加接近实测值。表2给出了指定误差范围时,分别采用文献[15]和本文模型进行波高推算的准确率。本文模型的波高推算结果误差在0.5m以内的占总数的76%。与文献[15]方法对比,本文模型对于1.5m以上的波浪推算效果明显优于文献[15]中基于风速数据的ANN推算模型。本文模型与文献[15]模型的最大差别在于,本文模型是以外海波高作为输入层,而文献[15]模型是以目标海域风速作为输入层。对于近岸岛礁桥址区而言,因为地形影响,这类海洋的波高主要受外海涌浪影响,这也是本文模型在近岸岛礁区的大浪推算时具有较好推算精度的原因。但对于一些较大的实测波高,本文模型因为忽略了风对波浪的影响,使得推算波高小于实测波高。
总的来说,推算波高与实测波高变化趋势基本一致,可满足工程建设的需求。在桥梁施工过程中,可以利用福建省海洋预报台每天发布的闽中海域预报资料和ANN算法对桥址区海域波高进行推算,即本文提出的波高推算模型可以利用外海预报信息有效地进行近岸岛礁桥址区的波高推算,可为大桥后期的施工组织安排和施工安全预警提供指导。
4结论
提出了基于外海环境预报的近岸岛礁桥址区波高ANN推算模型,以平潭海峡大桥桥址区为研究对象,分析了闽中海域风速、风向、波高等预报数据和桥址区海域实测波高数据,主要结论如下:
1)提出的波高ANN推算模型可以利用外海环境预报信息进行近岸岛礁桥址区的波高推算。
2)通过与前人方法和实测数据对比,采用本模型推算得出的近岸岛礁桥址区波高与实测波高的变化趋势基本吻合,均方根误差较小,且精度高于前人ANN模型。
3)提出的ANN推算模型可以较为准确地模拟波高变化趋势,但由于影响波高变化因素较多,包括风速、风压、海洋洋流运动、海床平面分布、地形地貌特征等,波高变化具有随机性,尤其当极端事件如台风等产生时,模型对波高特别是极端值的推算效果有待提高。使用更长时间的样本以及增加输入层变量是提高ANN模型推算精度的一种有效途径。
4)算例选择了操作较为简单、发展较为成熟的BP神经网络建立波高ANN推算模型。考虑到近岸岛礁桥址区实际波浪要素的复杂性,未来还可采用其他人工智能算法,进一步提高推算效率和精度。