人工神经网络在旅游人数预测中的应用研究

2016-06-29 18:45张莉
科技视界 2016年16期
关键词:人工神经网络遗传算法优化

张莉

【摘 要】旅游市场趋势预测是旅游业发展战略和旅游规划与开发工作的重要基础依据,是旅游市场研究中最重要的内容之一。本文基于人工神经网络方法,提出使用遗传算法对人工神经网络进行优化,进而进行预测,探索更精确、更适用于旅游市场预测现实状况的预测方法。

【关键词】旅游人数预测;人工神经网络;遗传算法;优化

0 引言

旅游市场趋势预测是旅游业发展战略和旅游规划与开发工作的重要基础依据,一直是旅游市场研究中最重要的内容之一。根据市场趋势预测的结果,旅游相关部门才可以制定合理的旅游规划,进行旅游资源的优化配置。旅游市场趋势预测是在对影响市场的诸因素进行系统调查和研究的基础上,运用科学的方法,对未来旅游市场的发展趋势以及有关的各种因素的变化,进行分析、预见、估计和判断。

近年来,旅游研究者对旅游市场趋势预测的方法进行了探索。目前主要有时间序列法、回归分析法、指数预测法、人工神经网络法。由于旅游市场的变化受到诸多因素的影响,导致旅游市场的趋势预测难度较大,但我们对预测精度的要求却越来越高。

本文是基于人工神经网络方法,提出使用遗传算法对人工神经网络进行优化,探索更精确、更适用于旅游市场预测现实状况的预测方法。

1 方法概述

人工神经网络是近年来的热点研究领域,是人类智能研究的重要组成部分,已经成为神经科学、计算机科学、认知科学、数学和物理学等多学科关注的热点。其应用领域包括:分类、预测、模式识别、信号处理和图像处理等,并继续向其他领域延伸。

1.1 BP神经网络

BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传播。在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层。每一层的神经状态只影响下一层神经元状态。如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阈值,从而使BP神经网络预测输出不断逼近期望输出。

图中,X1,X2,…,Xn是BP神经网络的输入值,Y1,Y2,…,Ym是BP神经网络的预测值,wij和wjk为BP神经网络权值。从图可以看出,BP神经网络可以看成一个非线性函数,网络输入值和预测值分别为该函数的自变量和因变量。当输入节点数为n,输出节点数为m时,BP神经网络就表达了从n个自变量到m个因变量的函数映射关系。

1.2 遗传算法

遗传算法(Genetic Algorithms)是1962年由美国Michigan大学Holland教授提出的模拟自然界遗传机制和重托进货论而成的一种并行随机搜索最优化方法。它把自然界“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编码串联群体中,按照所选择的适应度函数并通过遗传中的选择、交叉和变异对个体进行筛选,使适应度值好的个体被保留,适应度差的个体被淘汰,新的群体既继承了上一代的信息,又优于上一代。这样反复循环,直至满足条件。

1.3 遗传算法优化BP神经网络的流程

遗传算法优化BP神经网络分为BP神经网络结构确定、遗传算法优化和BP神经网络预测3个部分。其中,BP神经网络结构确定部分根据按拟合函数输入输出参数个数确定BP神经网络结构,进而确定遗传算法个体的长度。遗传算法优化使用遗传算法优化BP神经网络的权值和阈值,种群中的每个个体都包含了一个网络所有权值和阈值,个体通过适应度函数计算个体适应度。遗传算法通过选择、交叉和变异操作找到最优适应度值对应个体。BP神经网络预测用遗传算法得到最优个体对网络初始权值和阈值赋值,网络经训练后预测函数输出。

遗传算法优化BP神经网络是用遗传算法来优化BP神经网络的初始权值和阈值,使优化后的BP神经网络能够更好地预测函数输出。遗传算法优化BP神经网络的要素包括种群初始化、适应度函数、选择操作、交叉操作和变异操作。

1)种群初始化

个体编码方法为实数编码,每个个体均为一个实数串,由输入层与隐含层连接权值、隐含层阈值、隐含层与输出层连接权值以及输出层阈值4部分组成。个体包含了神经网络全部权值和阈值,在网络结构已知的情况下,就可以构成一个结构、权值、阈值确定的神经网络。

2)适应度函数

2 实证分析

旅游客流量与当地旅游硬件及软件设施建设、各种交通设备的完善程度有着密切的关系。一个旅游地的交通设施完善程度决定了该景区的可进入性以及客源地到旅游地的时间距离,直接影响该景区游客量。此外,景区建设情况及旅游接待设施的建设情况决定着景区的吸引力。需要指出的是,由于信息传达的特性,游客数量对景区旅游相关条件改善的反应具有延迟性的特点。本文中,采用2000 年以来北京旅客周转量、人均GDP、全国交通、A级及以上景区个数、北京公共交通运营线路长度、北京市基础投资,预测北京市旅游人数。

通过查询中国国家统计局及北京市统计局相关资料,得到全国人均GDP、全国交通、北京市旅客周转量、北京市A级及以上景区个数、北京市公共交通运营线路长度、北京市基础投资数据,如表1所示。

根据遗传算法和BP 神经网络理论,在MATLAB 软件中编程实现基于遗传算法优化的BP神经网络进行预测。预测误差及真实值与预测值对比如图2、图3所示。

3 模型的评价

神经网络是以数学模型寻找事物之间的规律,一个事物往往受到许多因素的影响,由许多细小的规律通过一系列变化而决定,神经网络需要唯一的未知的但确定存在的规律,才能进行合理的训练,不可牵强的将数据组合在一起,想让它们形成某种规律。

遗传算法优化BP神经网络是对普通BP神经网络的一种优化方法,如果把BP神经网络看成是一个预测函数,遗传算法优化BP神经网络相当于优化预测函数中的参数,优化后BP神经网络的预测效果一般优于未优化的BP网络。但是该算法是有局限性的,它只能有限提高原有BP神经网络的预测精度,并不能把预测误差较大的BP神经网络优化为能够准确预测的BP神经网络。

【参考文献】

[1]郑洲顺,汤嘉,等.基于灰色预测模型的2008北京旅游人口预测分析[J].数学的实践与认识,2010,5.

[2]张龙,李翔宇.基于灰色模型的旅游流量预测方法探讨——以河北省为例[J].商场现代化,2007,6.

[3]史会峰,牛东晓,卢艳霞.基于贝叶斯神经网络短期负荷预测模型[J].中国管理科学,2012,8.

[4]周志宏.基于SPS感知传播模型的旅游景点游客人数预测[J].统计与决策,2011,19.

[5]那欣兰,石培基,高栓成.基于LS_SVM的甘肃省国际旅游客流量预测[J].统计与决策,2010,18.

[6]蒋辉.我国人口预测分析[J].科技管理研究,2005,11.

[7]胡良剑,孙晓君.Matlab数学实验[M].高等教育出版社,2006,1.

[责任编辑:杨玉洁]

猜你喜欢
人工神经网络遗传算法优化
超限高层建筑结构设计与优化思考
一道优化题的几何解法
利用人工神经网络快速计算木星系磁坐标
人工神经网络实现简单字母的识别
基于自适应遗传算法的CSAMT一维反演
一种基于遗传算法的聚类分析方法在DNA序列比较中的应用
基于遗传算法和LS-SVM的财务危机预测
基于改进的遗传算法的模糊聚类算法
基于声发射和人工神经网络的混凝土损伤程度识别
波信号的解调和人工神经网络的损伤识别算法