创新,我们需要怎样的教学情境

2019-01-11 23:58安徽滁州市第二实验小学张毕云
小学教学研究 2019年6期
关键词:直觉图形创设

安徽滁州市第二实验小学 张毕云

一、牵引直觉——直觉情境

直觉是在已经获得的知识和经验的基础上产生的一种快速想象、一种灵感。直接、快速、跳跃是其最明显的特点。小学生由于知识、经验以及阅历有限,直觉思维并不明显,更多的时候处于隐藏的状态,需要教师在学生原有知识和经验的基础上,创设丰富的情境,来引导学生运用直觉思维来分析解决问题。

当教师出示课题或例题后,提问:“看到这个课题,你想学习什么知识?”“看到这个例题,你想认识些什么?”让学生先猜猜看、估计一下。如在学习“平行四边形面积的计算”时,板书课题后,教师提问:“看到要学习的内容,你首先想到什么?”有学生问:“平行四边形面积应该怎样计算?”有学生回答说:“用数方格的方法算面积,像长方形那样计算,先把平行四边形转化为长方形,再运用计算长方形面积的公式,算出平行四边形的面积。”学生在已有知识和经验的基础上做了大胆的猜测,并主动去验证猜测。教师随后安排各学习小组拿出学具等验证自己的想法。在验证中总结经验和方法。

教师让学生大胆猜测、小心求证,激发学生的直觉思维并积极运用,既培养了他们良好的思维习惯,又促进了他们推理能力的发展。

二、情急生智——需要情境

在小学数学教学中,创设有效的诱因,激发学生的学习欲望,促使其对学习活动产生直接的需要,是培养学生主动创新的基础。

如在教学苏教版一年级下册“统计”一课的第一课时,教师设计了“救白雪公主”的教学情境。静止的正方形、三角形、圆形从魔盒中跳出。如果要救出白雪公主,就必须在限定的时间内记下正方形、三角形、圆形的个数。创设一个学生熟知的童话情境,一下子就吸引住了学生的注意力。学生们怀着拯救白雪公主的美好情感和责任感,开始积极主动地探索。但由于图形从空中撒落得太快,并且落下就消失了,统计各种图形的个数有一定困难,于是学生产生了“如何统计”的认知冲突——需要统计方法。学生经过讨论,认为用打“√”的方法最好。有了用符号统计的方法后,一个人还是很难准确地统计出三种图形的个数,怎么办呢?学生经过探索并尝试,很快提出了合作统计的方式。在学习过程中,学生怎样统计、如何合作,完全是发自内心的需求,不是被动学习,而是积极主动参与到统计学习过程中。学生用小组的力量完成了学习任务,不仅学会了统计知识,更获得了如何去学习协作的能力。

在教学活动中,教师要了解学生的需要,根据他们的需要去创设情境,提供“土壤”,唤醒学生的主体意识、创新意识,让学生想学、要学、会学。

三、诱之以渔——启导情境

在教学活动中,教师通过启发、诱导,促使学生产生一种主动创新的渴望,从而主动去发现问题,学会思考,掌握学习与思考的方法,逐渐掌握数学知识,学会解决数学问题。

在数学创新教学中,教师不再是从条件或问题入手先带领学生来分析题目的数量关系,而是提问:“你准备从哪些方面入手来分析问题?”学生答:“我想从条件或问题切入。”教师给学生留有足够的思考空间,让学生的探索好奇心得以激发。

如苏教版三年级下册“认识分数”,教学“解决实际问题”。

师:听说,咱们班的同学上周二去春游了,是吗?

生:是。

师:和大家一样,“天线宝宝”也喜欢春游,瞧!他们出发了(课件出示4个天线宝宝游玩的情景)。

师:想知道他们带了什么吗? (课件出示一箱矿泉水,并有“36瓶”字样)

学生思考……

师:这就是我们今天要研究的“求一个数的几分之几是多少的实际问题”。

以上教学过程要求学生调整原有的认知结构,促使学生寻求解决“”是多少的途径和方法,有效激发学生的探究向深层次推进。学生在教师的“诱渔启导”下,自信地想、大胆地试,从不知到知,是一种发现,也是一种创新。

四、自主探究——探索情境

学生学习数学知识的全过程,是一个新知识的主动构建过程。在此过程中,他们积极调动已有的知识,来内化新知识。教师要让学生意识到自身的主人公地位,发挥主体作用,而教师则扮演好组织者、指导者的角色,让学生自主探索。

如对二年级“几百几十的加减”中的例题“320+40”的讲解,传统教学主要是运用方格图教具演示“320+40”的口算过程。在创新教学中,教师鼓励学生自己寻找新的计算方法。有学生经过观察,发现一个与“十”有关的规律,320中有32个十,40中有4个十,一共是36个十,320+40等于360。二年级小学生,通过观察与思考能发现用计数单位来进行计算,是自身创造性的表现。

在教学中,教师的任务已转为启发学生从不同的角度发表自己的见解,全方位地思考问题,提出别人没有想过的问题,从而培养学生的创新意识。每个教师只要处理好“放”和“引”的关系,留给学生充足的自主学习、思考的时间和空间,让他们体会到“我也能行”“我也能发现”,经历创新过程,体验创新带来的成就感。

五、异想天开——求异情境

求异是创新思维的灵魂。它是一种发散—求异—创新的活动。在教学活动中,教师要引导学生充分进行思维的发散,在比较中寻求变异。

如教学“计算33-8”时,教师先让学生独立思考,并与同桌交流各自的算法,看谁能想出更多的方法,鼓励学生通过探索总结出个性化的算法。学生提出的计算方法超出教师的预料,有列竖式、摆小棒、借助计数器、口算等。其中,更有一个学生提出了6种算法:

(1)33-3=30,30-5=25。

(2)10-8=2,23+2=25。

(3)38-8=30,30-5=25。

(4)33-10=23,23+2=25。

(5)30-8=22,22+3=25。

(6)8-3=5,30-5=25。

前面5种方法学生们表示容易理解并给予充分的肯定。第6种方法让人有点难以理解,该同学解释是:33-8,个位3个1减8个1,差5个1不够减,就从30里减5就是25。有理有据,师生们给他点赞。这个学生身上表现出了一种创新的勇气和干劲。

在日常教学中,有时候学生的一些特殊解法、解题思路,容易被教师埋没、扼杀。教师应充分给予学生阐述的机会,展示其思维过程,用心去发现并呵护学生创新思维的“火花”。

六、吹毛求疵——质疑情境

质疑是创造的种子。“小疑则小进,大疑则大进,不疑则不进”。在教学中,教师要创设不同的学习情境,鼓励学生多问为什么,深入思考,提出疑问,生发新见解。

在指导学生自学课本知识时,教师要鼓励学生在自学后积极提出有价值的问题,发现新的知识点,有问题与小伙伴一起合作解决。

好的数学问题是数学“创新”的载体,质疑则是学生主动学习的表现。教师通过抓住教材的重难点、关键处,让学生生疑、质疑,并通过研读教材、主动探索、交流沟通来解疑。

如学习了“确定位置”后,学生问:“东北面”也能叫“北东面”吗?学习了“轴对称图形”后,学生问:意大利、俄罗斯国旗既然颜色不对称,为什么也是轴对称图形呢?生活中没有两个完全一样的东西,为什么天安门城楼的两边是对称图形呢?学习了“认识分数”后,学生问:为什么写分数时不按照从上到下的顺序写呢?等等。学生能提出诸如此类的问题,是积极探索的结果,长期坚持,定会有所创新。

创新,我们需要理想的教学情境。通过创设情境,使课堂变成充满生命气息和活力的师生互动的课堂。不同的教学情境虽各具特点,但都必须适合学生发展、简洁有效。教师要在各具特点的教学情境中,引导学生自主探究、合作交流、实践操作、主动创新。♪

猜你喜欢
直觉图形创设
拉马努金——天才的直觉
直觉为舵 意象为帆——儿童直觉线描的“意象”表现教学实践
林文月 “人生是一场直觉”
创设情境 以说促写
创设情境 提高效率
一个“数学直觉”结论的思考
“教、学、评”一体化视域下问题串创设的实践
分图形
找图形
图形变变变