生化抑制剂组合与施肥模式对黄泥田稻季CH4和N2O排放的影响

2019-01-07 08:51吴良欢董春华
生态与农村环境学报 2018年12期
关键词:硫代施氮硝化

周 旋,吴良欢,戴 锋,董春华

1.湖南省农业科学院土壤肥料研究所,湖南 长沙 410125;2.教育部环境修复与生态健康重点实验室/ 浙江大学环境与资源学院,浙江 杭州 310058;3.浙江省农业资源与环境重点实验室/ 浙江大学环境与资源学院,浙江 杭州 310058;4.浙江奥复托化工有限公司,浙江 上虞 312300)

CH4和N2O是目前2种重要的温室气体,其温室效应分别为CO2的25和298倍[1]。稻田是大气温室气体的重要排放源[2],其中CH4排放量约占大气总来源的8%~13%,而全球60%~90%的N2O排放直接来源于农田氮(N)肥施用[3-4]。2014年我国水稻播种面积达3031万hm2,约占全国粮食播种总面积的三分之一,稻谷产量20650.7万t,占全国粮食产量的34.02%[5]。据估算,我国水稻生产中每年排放的CH4约为8.11Tg[6],对全球稻田CH4排放的贡献约为29.9%[7-8];且稻田中期烤田和干湿交替时期产生大量的N2O[9],每年向大气排放约88Gg N[10]。其中,土壤硝化与反硝化过程是N2O的主要来源,N肥施用不仅促进土壤N2O的排放,同时对稻田CH4有着重要影响[3]。此外,水分管理、施肥措施、土壤温度、土壤pH值及土壤养分含量等是制约稻田N2O排放的重要因素[11-12]。

关于农田土壤的N2O减排措施主要集中在优化施肥、施用缓控释肥、添加硝化抑制剂、配施有机肥、秸秆还田以及精准农业等方面[13]。其中,脲酶/硝化抑制剂可用来减缓土壤中尿素酰胺态N至NH4+-N的水解,抑制NH4+-N至NO3--N的氧化,减少NH3挥发、NO2-和NO3-径流与淋溶、N2与N2O等气态N损失,两者分别对土壤中尿素N转化的某一特定过程产生作用[14-17],但其对土壤CH4排放的影响目前报道不一[1,15]。

目前,关于生化抑制剂组合配施在黄泥田地区的应用较少[18],而结合施肥模式的温室气体排放研究更是鲜有报道。浙江奥复托化工有限公司经多次筛选发现一款有良好应用前景的脲酶抑制剂——N-丙基硫代磷酰三胺(NPPT),具有一定的抑制脲酶活性作用[19]。在稳产的前提下开展稻田施肥低排技术的研究,对于减少农业源温室气体排放的意义重大[8]。因此,采用静态箱-气相色谱法研究脲酶抑制剂和硝化抑制剂配施结合不同施肥模式对黄泥田稻季温室气体排放特征及全球增温潜势的影响,筛选出既能保证产量又能减排的施肥措施,为水稻高产优质生产及稻田节能减排提供理论依据和技术途径。

1 材料与方法

1.1 试验地概况

试验于2015年5—10月在浙江省金华市婺城区琅琊镇金朱村(29°01′19″ N,119°27′96″ E)进行。该区海拔86 m,年均降水量1 424 mm,年均温17.5 ℃,地处金衢盆地东缘,属中亚热带季风气候区。供试土壤为黄泥田水稻土。耕层土壤基本理化性状:有机质和全氮含量分别为25.60和1.87 g·kg-1, 碱解氮、有效磷和速效钾含量分别为118.40、7.21和93.00 mg·kg-1, pH值为5.31。

1.2 供试材料

供试水稻品种为杂交籼稻“两优培九”。供试N-丁基硫代磷酰三胺(NBPT)、NPPT和2-氯-6-(三氯甲基)吡啶(CP)24%乳油剂型分析纯,由浙江奥复托化工有限公司生产。供试肥料品种钾肥为氯化钾(K2O质量分数为60%),磷肥为过磷酸钙(P2O5质量分数为12%),N肥为尿素(N质量分数为46%)。

1.3 试验设计

试验采用生化抑制剂组合×施N模式两因素随机区组设计,设置2种施N模式(一次性和分次施肥)和6种生化抑制剂组合及不施N处理(CK),共13个处理:(1)CK;(2)U,一次性基施;(3)U+NBPT,一次性基施;(4)U+NPPT,一次性基施;(5)U+CP,一次性基施;(6)U+NBPT+CP,一次性基施;(7)U+NPPT+CP,一次性基施;(8)U3,基肥∶分蘖肥∶穗肥=5∶3∶2;(9)U3+NBPT,基肥∶分蘖肥∶穗肥=5∶3∶2;(10)U3+NPPT,基肥∶分蘖肥∶穗肥=5∶3∶2;(11)U3+CP,基肥∶分蘖肥∶穗肥=5∶3∶2;(12)U3+NBPT+CP,基肥∶分蘖肥∶穗肥=5∶3∶2;(13)U3+NPPT+CP,基肥∶分蘖肥∶穗肥=5∶3∶2。N肥与抑制剂配施前将两者混合均匀。脲酶抑制剂NBPT、NPPT添加量为0.5%,硝化抑制剂CP添加量为0.3%。N、磷(P2O5)、钾(K2O)用量分别为180、90和120 kg·hm-2。磷肥和钾肥全部用作基肥于移栽前一次性施入。栽插密度为19.8 cm×19.8 cm,25万穴·hm-2,每穴2苗。插秧后适当保持几天浅水,以后保持灌溉,促进分蘖,中期晒田,培育壮秆。此外,在孕穗期和灌浆期以湿润和浅水相间灌溉,乳熟期后自然落干直至收获。分次施肥(基肥、分蘖肥、穗肥)时间分别为6月21日、7月8日、8月10日。单季稻于2015年5月28日播种,6月21日移栽,10月12日收获。小区面积30 m2(5 m×6 m),重复3次。每小区之间筑埂并用塑料薄膜包裹,区组间设排灌沟,单灌单排。田间其他管理按常规方式进行。

1.4 采样方法及测定指标

采用静态箱-气相色谱法监测水稻田间温室气体排放[16-17]。采样箱为玻璃钢材料制成,每次采样前在底座水槽内加水以保证密封,在箱体与底座密封0、5、10、15、20 min时采用50 mL注射器采集气体样品。秧苗移栽后第2天开始采样,时间为08:30—10:30,在水稻生长期每隔6 d采样1次,采样过程参照文献[11]。每次采集气体样品时记录静态箱内温度。温室气体浓度采用气相色谱(Agilent 7890A,美国)测定,分离柱温55 ℃;CH4检测器为火焰离子检测器,温度200 ℃;N2O检测器为电子捕获检测器,温度330 ℃。土壤温度与相对湿度监测参照文献[18]。气温数据由浙江省金华市气象局婺城区监测点提供。

1.5 计算公式

稻田CH4和N2O排放通量计算公式[5]为

(1)

式(1)中,F为排放通量,CH4单位为mg·m-2·h-1,N2O单位为μg·m-2·h-1;T为采样箱内平均温度,℃;Δc/Δt为采样过程中采样箱内气体浓度变化率,mL·m-3·h-1;h为采样箱顶部至水面实际高度,m;ρ为CH4和N2O标准状态下密度,kg·m-3。

全球增温潜势(global warming potential,GWP,PGW)计算公式[5]为

PGW=25×FCH4+298×FN2O。

(2)

式(2)中,CH4和N2O所引起GWP(kg·hm-2,以CO2当量计)分别为100 a尺度上CO2的25和298倍。

温室气体排放强度(greenhouse gas intensity,GHGI,IGHG)计算公式[5]为

IGHG=PGW×(FCH4+FN2O)/Y。

(3)

式(3)中,Y为水稻产量,kg·hm-2。

1.6 数据处理

采用Excel 2003和SPSS 17.0数据分析软件进行统计分析,采用LSD检验法比较处理间差异显著性。

2 结果与分析

2.1 土壤相对湿度和稻田气温、土温

由图1可知,水稻生长前期水层较厚,中间晒田,后期落干,干湿交替较为频繁。单季稻整个生育期平均气温和土温分别为26.2和25.6 ℃,变化幅度分别为15.0和13.0 ℃;生长期气温和土温总体呈下降趋势,气温前期波动较大,土温变化幅度较小。

↓所指时间为分蘖肥或穗肥的施入时间。

2.2 稻季温室气体排放变化

2.2.1CH4排放通量

由图2可知,各处理CH4排放通量具有季节性变化规律,主要集中在水稻生长前期(分蘖期和孕穗期)。不同处理CH4排放于施肥后第7天(6月28日)开始达到峰值,强排放维持44 d,后期晒田时排放量明显较低,处理间差异不明显。

由表1可知,不同施肥模式下,施N处理稻季CH4排放总量均显著高于CK处理。

CK—不施氮处理;U—一次性施氮处理;U+ NBPT—一次性施氮+N-丁基硫代磷酰三胺处理;U+ NPPT—一次性施氮+N-丙基硫代磷酰三胺处理;U+CP—一次性施氮+2-氯-6-(三氯甲基)吡啶处理;U+NBPT+CP—一次性施氮+N-丁基硫代磷酰三胺+2-氯-6-(三氯甲基)吡啶处理;U+NPPT+CP—一次性施氮+N-丙基硫代磷酰三胺处理;U3—分次施氮处理;U3+NBPT—分次施氮+N-丁基硫代磷酰三胺处理;U3+NPPT—分次施氮+N-丙基硫代磷酰三胺处理;U3+CP—分次施氮+2-氯-6-(三氯甲基)吡啶处理;U3+NBPT+CP—分次施氮+N-丁基硫代磷酰三胺+2-氯-6-(三氯甲基)吡啶处理;U3+NPPT+CP—一次性施氮+N-丙基硫代磷酰三胺处理。

表1 稻田温室气体季节排放总量、增温潜势(GWP)及温室气体排放强度(GHGI)Table 1 GHG accumulation emission fluxes, global warming potential (GWP) and greenhouse gas intensity (GHGI) during rice growth season

施肥模式对稻季CH4排放总量效应显著(P<0.05)。U3处理稻季CH4排放总量较U处理降低13.5%。尿素一次性施用中,施N处理稻季CH4排放总量较CK处理增幅为59.2~87.7 kg·hm-2。与U处理相比,U+NBPT、U+NPPT、U+CP、U+NBPT+CP和U+NPPT+CP处理稻季CH4排放总量分别降低15.9%、21.4%、7.2%、15.4%和16.5%。尿素分次施用中,施N处理稻季CH4排放总量较CK处理增幅为48.9~69.7 kg·hm-2。与U3处理相比,U3+NBPT、U3+NPPT、U3+CP、U3+NBPT+CP和U3+NPPT+CP处理稻季CH4排放总量分别降低2.2%、1.5%、9.9%、16.7%和18.1%。说明尿素添加抑制剂能有效抑制土壤NH4+-N和NO3--N的转化速率,进而减少稻田CH4排放。

2.2.2N2O排放通量

由图3可知,各处理N2O排放通量具有季节性变化规律,N2O排放峰集中在施肥后、中期晒田和后期干湿交替阶段。不同处理N2O排放于施肥后第7天(6月28日)起达到峰值,强排放维持16 d。N2O排放通量峰值大小表现为:U> U+NPPT> U+NBPT> U+NBPT+CP> U+CP> U+NPPT+CP> CK(一次性施肥);U3> U3+NBPT> U3+NPPT> U3+CP> U3+NPPT+CP> U3+NBPT+CP> CK(分次施肥)。说明尿素添加抑制剂能有效抑制土壤NH4+的硝化作用,显著降低稻季N2O排放峰值。

由表1可知,不同施肥模式下,施N处理稻季N2O排放总量均显著高于CK处理。生化抑制剂组合和施肥模式及两者交互效应对稻季N2O排放总量效应极显著(P<0.01或P<0.001)。U3处理稻季N2O排放总量较U处理降低20.7%。尿素一次性施用中,施N处理稻季N2O排放总量较CK处理增幅为0.1~0.7 kg·hm-2。与U处理相比,U+NBPT、U+NPPT、U+CP、U+NBPT+CP和U+NPPT+CP处理稻季N2O排放总量分别降低18.6%、14.4%、61.4%、37.9%和53.9%。尿素分次施用中,施N处理稻季N2O排放总量较CK处理增幅为0.2~0.5 kg·hm-2。与U3处理相比,U3+NBPT、U3+NPPT、U3+CP、U3+NBPT+CP和U3+NPPT+CP处理稻季N2O排放总量分别降低23.9%、29.4%、43.0%、43.1%和38.9%。说明添加CP能有效抑制土壤硝化作用,减少N2O的产生;NBPT能有效抑制脲酶活性,减缓尿素水解,同时减少硝化/反硝化作用的底物含量,进而降低N2O的排放;两者组合对N2O的排放具有协同抑制效果。

CK—不施氮处理;U—一次性施氮处理;U+ NBPT—一次性施氮+N-丁基硫代磷酰三胺处理;U+ NPPT—一次性施氮+N-丙基硫代磷酰三胺处理;U+CP—一次性施氮+2-氯-6-(三氯甲基)吡啶处理;U+NBPT+CP—一次性施氮+N-丁基硫代磷酰三胺+2-氯-6-(三氯甲基)吡啶处理;U+NPPT+CP—一次性施氮+N-丙基硫代磷酰三胺处理;U3—分次施氮处理;U3+NBPT—分次施氮+N-丁基硫代磷酰三胺处理;U3+NPPT—分次施氮+N-丙基硫代磷酰三胺处理;U3+CP—分次施氮+2-氯-6-(三氯甲基)吡啶处理;U3+NBPT+CP—分次施氮+N-丁基硫代磷酰三胺+2-氯-6-(三氯甲基)吡啶处理;U3+NPPT+CP—一次性施氮+N-丙基硫代磷酰三胺处理。

2.3 温室气体增温潜势及排放强度

不同施肥模式下,施N处理稻田GWP显著高于CK处理(表1)。生化抑制剂组合和施肥模式分别对稻田GWP效应显著(P<0.05),其交互相应不显著(P>0.05)。U3处理稻田GWP较U处理降低14.4%。尿素一次性施用中,施N处理稻田GWP较CK处理增幅为133.2%~196.5%。与U处理相比,U+NBPT、U+NPPT、U+CP、U+NBPT+CP和U+NPPT+CP处理稻田GWP分别降低16.2%、20.5%、14.1%、18.3%和21.4%。尿素分次施用中,施N处理较CK处理稻田GWP增幅为101.6%~153.8%。与U3处理相比,U3+NBPT、U3+NPPT、U3+CP、U3+NBPT+CP和U3+NPPT+CP处理稻田GWP分别降低4.8%、4.8%、13.9%、19.8%和20.5%。说明尿素添加抑制剂能有效减少稻田GWP。

不同施肥模式下,施N处理稻田GHGI显著高于CK处理(表1)。生化抑制剂组合和施肥模式分别对稻田GHGI效应极显著(P<0.001),其交互相应不显著(P>0.05)。U3处理稻田GHGI较U处理降低25.0%。尿素一次性施用中,施N处理稻田GHGI较CK处理增幅为48.3%~137.2%。与U处理相比,U+NBPT、U+NPPT、U+CP、U+NBPT+CP和U+NPPT+CP处理稻田GHGI分别降低31.8%、35.0%、28.5%、34.2%和37.5%。尿素分次施用中,施N处理稻田GHGI较CK处理增幅为22.0%~77.8%。与U3处理相比,U3+NBPT、U3+NPPT、U3+CP、U3+NBPT+CP和U3+NPPT+CP处理稻田GHGI分别降低14.1%、16.1%、23.7%、28.4%和31.4%。说明尿素添加抑制剂能有效减少稻田GHGI,有利于稻田保产或增产条件下节能减排。

3 讨论

3.1 施肥模式对稻田温室气体排放的影响

N肥施用为稻田N2O的产生提供基质,增加土壤N2O排放潜力[20]。一般情况下,少量多次、分期分批施用N肥均可减少N2O排放;稻田深施N肥会减少N素损失[21]。该研究中,分次施肥较一次性施肥明显降低稻田土壤N2O排放峰值,主要是由于施肥时间与作物吸收养分同步,作物对肥料N的吸收利用率更高[22]。地表撒施会造成大量的肥料N挥发而降低N2O排放[23]。因而,该研究中分次施肥后期表施较前期基施减少土壤N2O的排放;一次性基施中多余N肥未能被植株及时吸收,其水解后NH4+直接参与硝化反应,易导致N2O快速生成[5]。

稻田CH4排放高峰主要集中在水稻生育前期,特别是晒田之前,之后排放明显减弱[11],与笔者研究结果一致。相关研究认为,NH4+-N或产铵N肥对稻田土水界面的CH4氧化有抑制作用,从而会增加CH4排放[16,24]。李方敏等[25-26]发现,尿素分次施用处理较复合肥处理明显降低N2O相对增温潜势,对CH4不显著,进而显著降低GWP。BANGER等[27]通过Meta分析表明,化学N肥施入稻田显著增加CH4排放,但因施用量、运筹方式及种类不同而存在差异[28]。笔者研究结果表明,分次施肥较一次性施肥可以有效减少稻田土壤CH4排放。

3.2 抑制剂组合对稻田温室气体排放的影响

在N肥中添加硝化或脲酶抑制剂是降低N2O排放且增加作物产量的重要农田管理措施[29-32]。硝化抑制剂通过抑制硝化作用来降低N2O排放[33],脲酶抑制剂通过抑制脲酶活性来减缓尿素水解,从而间接减少N2O排放[34]。王浩成等[35]发现,尿素+双氢胺(DCD)和尿素+氢醌(HQ)的N2O排放量较普通尿素分别减少40%和34%。孙海军等[36]采用15N平衡计算表明,稻田施用CP减少21.7%~28.1%的硝化/反硝化、径流等途径15N损失,笔者研究结果与之相等。该研究中,添加CP能有效抑制黄泥田土壤中硝化作用,减少土壤N2O的产生与排放。

相关研究表明,脲酶抑制剂(如NBPT、HQ等)和硝化抑制剂(如DCD、吡啶、乙炔等)均可降低稻田土壤N2O的排放[37],且结合使用(如HQ+DCD等)效果更佳[30,38]。XU等[39]发现,DCD+HQ配施使土壤中N2O和CH4排放总量分别降低47.4%和53.1%。孙祥鑫等[17]发现,不同缓/控释尿素处理对N2O的减排效果表现为1%3,4-二甲基吡唑磷酸盐(DMPP)+U(74.9%)> 树脂包膜尿素(PCU)(62.1%)> 1%HQ+3%DCD+U(54.7%)> 0.5%NBPT+1%DMPP+U(42.2%)> 3%DCD+U (35.9%)> 1%HQ+U(28.9%)> 0.5%NBPT+U(17.7%)> 硫包膜尿素(SCU)(14.5%)。可见,不同缓/控释尿素田间温室气体效应表现差异较大。该研究中,与U和U3处理相比,抑制剂处理N2O排放总量分别降低14.4%~61.4%和23.9%~43.1%,主要是由于脲酶/硝化抑制剂能延缓尿素水解,抑制硝化反硝化作用进行,使施入土壤中的N肥较长时间内以NH4+-N式存在来供作物吸收利用,减少NO3--N累积,从而减缓N2O 的产生[15]。

目前,脲酶/硝化抑制剂对稻田CH4排放影响的报道存在差异[40-41]。ZERULLA等[42]发现,DMPP能抑制土壤中硝化作用,降低NO3--N生成,有效减排N2O,而对CH4氧化有一定影响。贺非等[1]发现,高产施肥+NBPT稻田的CH4季节累积排放量较常规施肥减少25.8%,而N2O排放无明显差异。添加抑制剂处理稻季CH4排放总量与U和U3处理相比,分别降低7.2%~21.4%和1.5%~18.1%,主要是由于添加抑制剂处理水稻生育前期土壤NH4+含量低于尿素处理,抑制CH4氧化作用偏弱,排放通量偏低[43],后期稻田处于干湿交替状态,充足N素供应加上好氧条件极可能促进甲烷氧化菌的生长和提高菌群数量,进而氧化更多的CH4[44]。刘昭兵等[16]发现,双季稻田配施抑制剂CH4和N2O总排放量明显较常规施肥降低7.6%~36.4%和25.8%~29.9%。贺非等[1]发现,高产施肥+NBPT综合温室效应较常规施肥处理降低2 581.92 kg·hm-2,单位产量GWP减少29.9%。王斌等[43]发现,双季稻田不同种类肥料施用的综合温室效应表现为:常规施肥>硫包膜控释尿素>DMPP>EM菌剂>碧晶尿素>树脂包膜控释尿素,且晚稻减排效果明显高于早稻。郭晨等[8]发现,配施DMPP处理较优化处理水稻季CH4和N2O减排41.6%和85.7%,休闲季减排76.9%和6.5%,GHGI为0.33 kg·kg-1。笔者研究结果表明,与U和U3处理相比,添加抑制剂处理稻季GWP分别降低14.1%~21.4%和4.8%~20.5%,GHGI分别降低28.5%~37.5%和14.1%~31.4%,与以上研究结果一致。

4 结论

黄泥田添加CP可有效抑制土壤硝化反应,减少N肥气态损失,降低温室效应,且满足作物对N素的需要。新型脲酶抑制剂NPPT单独施用及与CP配施的稻田温室气体排放特征与NBPT相似。施肥模式与抑制剂相结合在保证产量或增产的前提下可以降低黄泥田稻季CH4和N2O排放通量,减少期间的增温潜势和排放强度。基于作物阶段N素吸收、增加追肥比例和施肥次数的优化施N方法,可在一定程度上达到减排温室气体的效果,从而与抑制剂组合构建稻田温室气体减排新技术体系,值得今后深入研究和大力推广。

猜你喜欢
硫代施氮硝化
6-苄氨基嘌呤处理对鲜切西兰花硫代葡萄糖苷代谢的影响
高碱溶液体系下砷的硫代行为及其分离技术
缓释碳源促进生物反硝化脱氮技术研究进展
施氮水平对油菜生育后期氮素吸收积累和分配的影响
原油中硫代金刚烷的分析鉴定和地球化学应用
氮肥运筹对地下滴灌玉米产量的影响
硫代砷化物的合成、鉴定和定量分析方法研究
施氮对不同耐氮性甘薯品种干物质积累与分配及产量的影响
浅谈污水中脱氮的途径
均匀施氮利于玉米根系生长及产量形成