汪洋,查云飞,邢栋
作者单位:
武汉大学人民医院放射科,武汉430060
在肌肉退变过程中,正常肌纤维形态发生改变并被脂肪组织取代,脊柱稳定性下降,这可能是下腰痛产生的重要原因之一[1]。目前,已经有研究表明椎旁肌肉脂肪含量与椎间盘高度降低有关[2];与无症状对照组患者相比,下腰痛患者的椎旁肌肉脂肪浸润增加和肌肉横截面积减少[3];而且肌肉脂肪浸润较少的患者,椎间盘源性腰腿痛患者治疗后的效果也相对较好[4]。
尽管以上研究表明下腰痛与椎旁肌肉退变之间存在关联,但近年来只有少数学者[5-6]对椎旁肌肉脂肪浸润与腰椎间盘退变进行了评估,而且这些研究都是采用主观评价或半定量测定椎旁肌肉脂肪含量。
本研究拟采用IDEAL-IQ (iterative decomposition of water and fat with echo asymmetry and leastsquares estimation quantitation)技术定量测定椎旁肌肉脂肪含量,希望能为临床诊断和治疗提供参考以及准确的影像学依据,同时评价椎旁肌肉脂肪含量与椎间盘退变的相关性。
选取57名患者,男21例,女36例,年龄范围19~79岁,平均年龄(47.93±13.03)岁,所有患者均来自武汉大学人民医院,检查前均签署知情同意书。纳入标准:临床以腰腿痛或坐骨神经痛欲行腰椎MRI检查的患者。剔除标准:患有恶性肿瘤、血液病、糖尿病、库欣综合征及其他系统性疾病病史;绝经后行雌激素替代治疗的女性患者;体重指数>28 kg/m2;长期药物服用史;长期吸烟、饮酒、厌食症患者;急慢性骨折、瘫痪及腰部手术的患者;Cobb角大于10°的腰椎侧弯畸形患者;幽闭恐惧症患者。
采用GE Discovery MR750 Plus 3.0 T超导磁共振(GE Healthcare;Little Chalfont,England)行腰椎常规T2WI序列矢状位及IDEAL-IQ序列轴位扫描,线圈采用CTL脊柱相控阵线圈,受检者取仰卧位。IDEAL-IQ序列参数:翻转角4°,TR 7.8 ms,TE 1.2 ms、3.2 ms、5.2 ms、7.2 ms、9.2 ms、11.2 ms,带宽125 kHZ,扫描层厚4 mm,视野30 cm×24 cm,矩阵288×288,激励次数2,回波链长度3,扫描时长2 min 58 s;T2WI序列参数:TR 2500,TE 142,带宽62.5 kHZ,激励次数2,回波链长度21,层厚4 mm,层间距0.5 mm,视野32 cm×32 cm,矩阵512×512,扫描时长1 min 25 s。
腰椎常规T2WI序列矢状位,根据Pfirrmann分级标准[7]:Ⅰ级,髓核呈均匀的高信号,纤维环与髓核分界清晰,椎间盘高度正常;Ⅱ级,髓核呈不均匀的高信号,髓核内伴或不伴水平状信号带,纤维环与髓核分界清晰,椎间隙正常;Ⅲ级,髓核呈不均匀的中等信号,纤维环与髓核分界不清晰,椎间隙正常或轻度狭窄;Ⅳ级,髓核呈不均匀的中等或低信号,髓核与纤维环不能区分,椎间隙正常或中度狭窄;Ⅴ级,髓核呈不均匀低信号,髓核与纤维环不能区分,椎间隙重度狭窄。由2名5年以上肌骨影像学工作经验的医师在矢状位T2WI序列上分别对腰椎间盘退变程度进行分级(图1),有分歧时共同商量决定,将椎间盘分为5组。
IDEAL-IQ序列轴位扫描图像传入GE AW 4.6工作站,由以上相同的2名医师在fat fraction图像上各自勾画所有L1~S1椎间盘中心层面椎旁肌感兴趣区(region of interest,ROI),椎旁肌ROI分别设在两侧多裂肌(Multifidus,MF)、竖脊肌(Erector spinae,ES)和腰大肌(Psoas,PS)(图2),沿肌肉外轮廓勾画,避开肌肉周围脂肪组织,系统自动生成所画区域的脂肪百分比(fat fraction,FF)和横截面积(cross-sectional area,CSA),每种椎旁肌肉左右两侧各测量三次取平均值;根据同层面椎间盘分级,将椎旁肌肉相应的也分为5组。
使用SPSS 21.0软件(SPSS Inc,Chicago,IL,USA)进行统计学分析,采用组内相关系数(Intraclass correlation coefficient,ICC)评价2名医师测量椎旁肌肉FF和CSA值的一致性,ICC值大于0.80认为测量结果一致性较好。
图1 腰椎间盘Pfirrmann分级示例 图2 腰椎轴位IDEAL-IQ序列中的fat fraction图,分别勾画腰大肌、竖脊肌、多裂肌的ROIFig. 1 Example Pfirrmann gradation of lumbar disc. Fig. 2 The fat fraction diagram in the IDEAL-IQ sequence of the lumbar axis, which outlines the ROI of the PS, ES, and MF.
用ANOVA单因素方差分析比较不同腰椎间盘Pfirrmann分级组间相应层面椎旁肌肉FF及CSA差异;用Spearman相关性分析评价腰椎间盘Pfirrmann退变程度与相应层面椎旁肌肉FF及CSA的相关性,相关系数r>0.7被认为显著相关;r=0.5~0.7为强相关;r=0.3~0.5为中等程度相关;r<0.3为弱相关。采用多元线性回归分析以评估性别、年龄、腰椎间盘退变程度是否为PS、ES、MF的FF和CSA的独立影像因素。以上分析均以P<0.05为差异有统计学意义。
2名观察者测得的椎旁肌肉(PS、ES、MF)FF及CSA的ICC值分别为0.85,0.81,0.84;0.97,0.90,0.82,说明2名观察者结果具有很好的一致性,然后取两人平均数作为最终数据。
不同腰椎间盘Pfirrmann分级组间椎旁肌肉FF及CSA的差异均有统计学意义(表1)。不同腰椎间盘Pfirrmann分级与椎旁肌肉(PS、ES、MF)FF的Spearman相关性分析结果表明腰椎间盘Pfirrmann分级与PS、ES和MF的FF均存在相关性,其中与PS的FF弱相关,与ES和MF的FF中等程度相关(相关系数分别为0.208,0.392,0.433,P值均小于0.001;图3A~C);不同Pfirrmann分级组间椎旁肌肉(PS、ES、MF)CSA的Spearman相关性分析表明腰椎间盘Pfirrmann分级与PS、ES和MF的CSA均为弱相关(相关系数分别为0.170,-0.284,0.240,P值分别为0.004,<0.001,<0.001;图3D~F)。
由于多元线性回归的各相关因素并非全部独立存在,而有可能存在一定的共线性,所以对性别、年龄、腰椎间盘Pfirrmann分级3个变量进行逐步回归分析,以进入概率为α≤0.05,移出概率α≥0.01进行分析,剔除其中存在共线性的变量,最终选入性别、年龄和腰椎间盘Pfirrmann分级作为PS、MF的FF的自变量,腰椎间盘Pfirrmann分级作为ES的FF的自变量;性别、年龄和腰椎间盘Pfirrmann分级作为PS、MF的CSA的自变量,性别、椎间盘Pfirrmann分级作为ES的CSA的自变量。
表1 不同Pfirrmann分级椎旁肌肉FF(%)、CSA (mm2)差异的比较( ±s)Tab. 1 Comparison of FF (%) and CSA (mm2) differences in paravertebral muscles of different Pfirrmann grades ( ±s)
椎间盘Pfirrmann分级 个数 PS ES MF FF (%) CSA (mm2) FF (%) CSA (mm2) FF (%) CSA (mm2)Ⅰ级 8 6.00±1.24 739.59±94.43 11.02±4.82 1300.83±790.80 11.481±3.130 665.92±254.91Ⅱ级 98 6.90±1.84 594.53±373.35 12.66±7.56 1448.55±534.25 13.516±4.862 540.00±278.55Ⅲ级 106 6.99±1.95 548.23±344.95 14.34±9.61 1399.73±596.41 15.521±6.771 530.95±287.14Ⅳ级 65 7.90±2.09 787.17±333.13 22.76±10.88 959.86±592.03 20.989±6.754 774.30±264.81Ⅴ级 8 8.32±1.92 800.09±335.87 22.83±9.98 877.96±723.74 24.069±4.821 751.09±252.67 F值 4.50 5.67 14.55 8.91 19.92 9.90 P值 0.002 <0.001 <0.001 <0.001 <0.001 <0.001
图3 A~C:腰椎间盘Pfirrmann分级与PS、ES、MF的FF相关性分析散点图;D~F:腰椎间盘Pfirrmann分级与PS、ES、MF的CSA相关性分析散点图Fig. 3 A—C: Scatter plot of the correlation between lumbar disc Pfirrmann grading and the FF of PS, ES. MF. D—F: Scatter plot of the correlation between lumbar disc Pfirrmann grading.
表2 PS的FF影响因素多元线性回归分析Tab. 2 Multiple linear regression analysis of in fluence factors of PS FF
表3 MF的FF影响因素多元线性回归分析Tab. 3 Multiple linear regression analysis of in fluence factors of MF FF
表4 ES的FF影响因素多元线性回归分析Tab. 4 Multiple linear regression analysis of in fluence factors of ES FF
表5 PS的CSA影响因素多元线性回归分析Tab. 5 Multiple linear regression analysis of in fluence factors of PS CSA
表6 MF的CSA影响因素多元线性回归分析Tab. 6 Multiple linear regression analysis of in fluence factors of MF CSA
表7 ES的CSA影响因素多元线性回归分析Tab. 7 Multiple linear regression analysis of in fluence factors of ES CSA
以进入概率为α≤0.05,移出概率α≥0.01进行多元线性回归分析,所有回归分析模型P值均小于0.001,多元线性回归分析表明性别、年龄和腰椎间盘Pfirrmann分级是PS和MF的FF的独立影响因素(表2,3),腰椎间盘Pfirrmann分级是ES的FF的独立影响因素(表4);性别、年龄和腰椎间盘Pfirrmann分级是PS和MF的CSA独立影响因素(表5,6),性别和腰椎间盘Pfirrmann分级是ES的CSA独立影响因素(表7)。
本研究表明腰椎间盘Pfirrmann分级与PS、ES和MF的FF及CSA均存在相关性,其中与ES和MF的FF存在中等程度相关性,其余均为弱相关;腰椎间盘Pfirrmann分级是PS、ES和MF的FF和CSA独立的影响因素。
Panjabi等[8]曾经提出了保持脊柱稳定性“三亚系模型”:被动亚系、主动亚系和神经控制亚系,被动亚系主要由椎体、椎间盘、小关节和韧带等组成,主动亚系由肌肉和肌腱组成,三个亚系相互独立,但又相互联系,当某一因素发生损害,可由其他要素加以代偿。椎旁肌功能减退将改变原有生物力学关系,引起关节囊、关节软骨、椎间盘等结构负荷增大、负荷不均,进而引起腰痛、腰椎失稳、腰椎间盘退变。反之,椎间盘退变也会引起腰椎不稳,椎旁肌代偿,继而椎旁肌负荷失衡,产生退变。国外有学者做过研究[9],当去除椎旁肌后,只保留韧带的腰椎可承受压力显著下降,表明椎旁肌在维持脊柱稳定性方面发挥着重要作用,体外实验也发现多裂肌在屈曲和伸展等矢状面活动发挥着重要作用[10],当椎间盘生物力学发生改变后,将影响椎间盘中胶原结构的排列,使细胞生物学环境发生改变,出现退变[11]。龚剑秋等[12]研究发现,单侧症状腰椎间盘突出对双侧多裂肌均有影响,使双侧多裂肌出现萎缩和脂肪化,但以患侧为甚,而且患侧多裂肌的肌电图也会出现变化。本研究显示椎间盘Pfirrmann分级与PS、ES和MF的FF及CSA均存在相关性,也说明椎间盘和椎旁肌肉之间存在联系。而且,腰椎间盘Pfirrmann分级是PS、ES和MF的FF和CSA独立的影响因素,说明虽然椎旁肌肉退变受年龄、性别和椎间盘退变的影响,但椎间盘退变是椎旁肌肉退变的独立影响因素,不受其他因素的干扰。
此外,腰椎间盘Pfirrmann分级与ES和MF的FF存在中等程度相关性,而与PS的FF只存在弱相关,这可能是相比于PS,ES和MF与腰椎位置关系最为密切,维持同样的力矩,ES和MF所需要的力量也相对较大,而且有很多学者做过大量研究[10,13-15],MF和PS分别在维持腰椎矢状面和冠状面稳定中起到重要作用,由于在日常生活中,类似于弯腰这种矢状面上的活动最为频繁,所以MF在椎旁肌退变中也最容易发生,PS退变程度相对最轻。腰椎间盘Pfirrmann分级与PS、ES和MF的CSA均呈弱相关性,笔者推测这可能是由于肌肉横截面积在不同个体及群体中差异较大,而且肌肉萎缩在肌肉退变过程中需要较长的时间积累才会表现出来。
最近国外也有学者做过类似的研究,Teichtahl等[5]采用主观分级方法对椎旁肌肉脂肪含量进行评估,Urrutia等[6]采用半定量的方法对椎旁肌肉脂肪含量进行评估,虽然最终两者结论与本研究相近,但都没有对椎旁肌肉脂肪含量进行准确定量的评估,而且在实验入组上,两者都没有排除肥胖、脊柱侧弯、糖尿病等患者[16-18],因为有研究显示这些因素对肌肉脂肪含量都有影响。
IDEAL-IQ技术作为改进的DIXON成像,采用小角度激发及非对称采集技术,并用多回波技术重建,一次扫描可产生6幅图像,分别是fat、water、in-phase、out-phase、R2*maps和fat fraction maps,其中fat fraction maps可以直接计算出感兴趣区的FF,以往多用于肝脏和骨髓脂肪定量评价[19-20],Fischer等[21]进行了前瞻性的研究,证明IDEAL-IQ技术对椎旁肌肉脂肪含量的测定具有很好的准确性。
本实验也存在一些不足之处。首先,在实验入组上,由于要排除脊柱畸形对实验的干扰,所以很多腰椎侧弯的病人都被排除在外,但是腰椎间盘退变比较严重的病人往往伴随有腰椎侧弯,这也导致本实验椎间盘Ⅳ级和Ⅴ级病例比较少,整体退变程度不重,相关系数r值不够高;其次,本实验中笔者没有对受检者临床症状区分急性、慢性和复发性下腰痛,国外有学者研究显示对于慢性下腰痛患者,有中等程度MF萎缩的证据,而ES和PS没有,另外对于急性和复发性下腰痛患者,椎旁肌没有明确的宏观或微观结构变化,表明不同类型的下腰痛患者,其MF有不同表现,PS和ES则没有明显差异,所以实验结果可能受到一定程度影响[22];再次,椎旁肌肉是一个纵向分布的整体器官,而本实验只选取了各腰椎间盘对应的椎旁肌肉层面,不能很好地量化整个肌肉的退变程度,而且椎旁肌肉退变有着复杂的生理学及生物力学机制,各腰椎间盘退变及其对应的椎旁肌肉层面退变不一定存在严格的一一对应关系,实验结果可能受一定影响,这也是本实验研究方法的一种局限。
综上所述, ES和MF的脂肪浸润程度与腰椎间盘退变程度存在中等程度相关性;腰椎间盘Pfirrmann分级是PS、ES和MF的FF和CSA独立的影响因素。
参考文献 [References]
[1] D'hooge R, Cagnie B, Crombez G, et al. Increased intramuscular fatty in filtration without differences in lumbar muscle cross-sectional area during remission of unilateral recurrent low back pain. Man Ther, 2012, 17(6): 584-588.
[2] Teichtahl AJ, Urquhart DM, Wang Y, et al. Physical inactivity is associated with narrower lumbar intervertebral discs, high fat content of paraspinal muscles and low back pain and disability. Arthritis Res Ther, 2015, 17: 114.
[3] Parkkola R, Rytokoski U, Kormano M. Magnetic resonance imaging of the discs and trunk muscles in patients with chronic low back pain and healthy control subjects. Spine, 1993, 18(7): 830-836.
[4] Storheim K,Berg L,Hellum C,et al. Fat in the lumbar multifidus muscles-predictive value and change following disc prosthesis surgery and multidisciplinary rehabilitation in patients with chronic low back pain and degenerative disc: 2-year follow-up of a randomized trial. BMC Musculoskelet Disord, 2017, 18(1): 145.
[5] Teichtahl AJ, Urquhart DM, Wang Y, et al. Lumbar disc degeneration is associated with modic change and high paraspinal fat content-a 3.0 T magnetic resonance imaging study. BMC Musculoskeletal Disord, 2016, 17(1): 439.
[6] Urrutia J, Besa P, Lobos D, et al. Lumbar paraspinal muscle fat infiltration is independently associated with sex, age, and intervertebral disc degeneration in symptomatic patients. Skeletal Radiol,2018, 47(7): 955-961.
[7] Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine, 2001,26(17): 1873-1878.
[8] Panjabi MM. The stabilizing system of the spine. Part I. Function,dysfunction, adaptation, and enhancement. J Spinal Disord, 1992,5(4): 383-389.
[9] Crisco JJ, Panjabi MM, Yamamoto I , et al. Euler stability of the human ligamentous lumbar spine. Part Ⅱ: Experiment. Clin Biomech, 1992, 7(1): 27-32.
[10] Wilke HJ, Wolf S, Claes LE, et al. Stability increase of the lumbar spine with different muscle groups: a biomechanical in vitro study.Spine, 1995, 20(2): 192-198.
[11] Huang ZQ, Liu SL, Zheng ZM. Ultrastructure change of degenerated intervertebral disk caused by bilateral zygapophysial joints destruction. Chin J Chinical anatomy, 2008, 26(2): 185-188.
黄宗强, 刘尚礼, 郑召民. 椎间失稳诱发椎间盘退变的超微结构改变. 中国临床解剖学杂志, 2008, 26(2): 185-188.
[12] Gong JQ, Fan SW. Pathophysiological changes in lumbar disc herniation. Chin J Phys Med Rehabil, 2014, 36(1): 31-35.
龚剑秋, 范顺武. 单侧症状腰椎间盘突出患者双侧多裂肌的病理生理改变. 中华物理医学与康复杂志, 2014, 36(1): 31-35.
[13] Dofferhof AS, Vink P. The stabilising function of the mm.iliocostales and the mm.multifidi during walking. J Anat, 1985, 140(Pt 2): 329-336.
[14] Danneels LA, Vanderstraeten GG, Cambier DC, et al. A functional subdivision of hip, abdominal, and back muscles during asymmetric lifting. Spine, 2001, 26(6): E114-121.
[15] Santaguida PL, McGill SM. The psoas major muscle: a threedimensional geometric study. J Biomech, 1995, 28(3): 339-345.
[16] Consitt LA, Bell JA, Houmard JA. Intramuscular lipid metabolism,insulin action, and obesity. IUBMB Life, 2009, 61(1): 47-55.
[17] Shafaq N, Suzuki A, Matsumura A, et al. Asymmetric degeneration of paravertebral muscles in patients with degenerative lumbar scoliosis. Spine, 2012, 37(16): 1398-1406.
[18] Beha A, Juretschke HP, Kuhlmann J, et al. Muscle type 2 specific fatty acid metabolism in insulin resistance:an integrated in vivo study in Zucker diabetic fatty rats. Am J Physiol Ecdocrinol Metab, 2006,290(5): 2988-2997.
[19] Chiang HJ, Lin LH, Li CW, et al. Magnetic resonance fat quantification in living donor liver transplantation. Transplant Proc,2014, 46(3): 666-668.
[20] Hu L, Zha YF, Wang L, et al. Quantitative evaluation of vertebral microvascular permeability and fat fraction in alloxan-induced diabetic rabbits. Radiology, 2018, 287(1): 128-136.
[21] Fischer MA, Nanz D, Shimakawa A, et al. Quantification of muscle fat in patients with low back pain: comparison of multi-echo MR imaging weith single-voxel MR spectroscopy. Radiology, 2013,266(2), 555-563.
[22] Goubert D, Oosterwijck JV, Meeus M, et al. Structural changes of lumbar muscles in non-specific low back pain. Pain Physician, 2016,19(7): E985-E1000.