杨洪波,申 艳,徐明岗,史天昊,段英华*
(1 中国农业科学院农业资源与农业区划研究所/耕地培育技术国家工程实验室,北京 100081;2 亿利生态修复股份有限公司,北京 100022)
氮肥施入土壤后,一部分被作物吸收利用,一部分因挥发或淋溶而损失,其余部分便残留在土壤中[1]。巨晓棠等[2]对我国北方石灰性旱作土壤的田间原位观测试验结果表明,一季作物之后化肥氮在根区的残留率约为30%。残留氮以多种形式存在于土壤中,如硝态氮、交换性铵、生物固定的有机氮、土壤稳定组成中的有机氮等。当氮肥施用量高时,土壤中有大量氮肥残留。这些残留养分都可以被后茬作物吸收利用,并且由于土壤有机氮各组分的有效性及其在残留氮和土壤固有氮中的分布不同,使得残留肥料氮的有效性高于土壤固有氮[3]。15N标记肥料长期定位试验结果表明,1982年施入土壤的标记氮肥在之后的30年中被作物累计吸收60%~65%,有8%~12%流向了水体,土壤残留仍有12%~15%[4]。我国目前普遍施肥量大,长期以来土壤氮素盈余不断积累,其后效影响开始显现[5]。所以,阐明土壤残留氮的有效性,对于后季种植中合理施肥,挖掘土壤中已累积的氮素资源具有重要意义。
Jastrow等[6]研究表明,表层土壤近90%的氮素存于团聚体中。团聚体组分由于其形成机制不同,在营养元素的保持、供应及转化能力等方面发挥着不同的作用,进而影响有机氮在土壤中的有效性[7–8]。笔者通过采集长期不施肥、化肥、化肥 + 秸秆和化肥 +有机肥的黑土,模拟田间施肥量加入15N标记的尿素,研究了粗游离颗粒有机物 (cfPOM,> 250 μm)、微团聚体有机物 (iPOM,53~250 μm)、团聚体内矿物结合有机物 (MOMi,< 53 μm) 和团聚体外矿物结合有机物 (MOMo,< 53 μm) 等4个组分中尿素氮的固持量及固持效率[9]。然而,这些固持氮的有效性又因组分的差异而不同。为深入阐明各组分残留氮的植物有效性,本文用以上获得的团聚体组分来培养黑麦草,以阐明长期不同施肥下农田土壤各级团聚体中氮的有效性差异,以期为氮肥合理施用,提高氮肥利用率和农业可持续性发展提供理论依据。
原始土壤采自于位于吉林公主岭“国家黑土肥力长期试验站” (124°48′34″E,43°30′23″N) 的长期定位施肥试验。该试验始于1990年,种植制度为玉米连作,一年一熟制。本研究选择该试验中的4个处理:不施肥 (CK)、氮磷钾 (NPK)、氮磷钾 + 秸秆(NPKS)、氮磷钾 + 农家肥 (NPKM)。2014年10月份作物收获后,采集1000 g土样到2 L的塑料瓶,加入15N丰度为20.12%的尿素,置于25℃培养箱中恒温控湿培养40天。培养完成后将土样风干,采用Six等[7]的团聚体分离方法得到不同组分的有机物,包括粗游离颗粒有机物 (cfPOM,> 250 μm)、微团聚体有机物 (iPOM,53~250 μm) 和矿物结合有机物(MOM,< 53 μm),MOM又包括团聚体内矿物结合有机物 (MOMi) 和团聚体外矿物结合有机物 (MOMo),分析不同团聚体组分中15N的固持量,以阐明外源氮肥在团聚体中的分布特征。试验地概况、施肥处理、土样培养和团聚体筛分方法及相应结果详见文献[9]。本文利用该培养试验分离获得的不同团聚体组分,采用黑麦草培养试验,重点分析这些团聚体组分中固持氮对植物的有效性。
基于杨洪波等[9]不同施肥处理下各组分固持尿素15N含量的结果,本试验取cfPOM、iPOM、MOMo、MOMi四种土壤组分继续研究 (表1),而细游离颗粒有机物轻组分 (ffPOM,53~250 μm) 量非常少,不足以种植黑麦草,故舍去。分别用各个组分种植黑麦草,培养过程如下:用浓度为30%双氧水对黑麦草种子、石英砂消毒灭菌30分钟并用蒸馏水清洗干净,黑麦草种子放进培养皿于25℃培养箱中培养3~4天发芽,石英砂105℃烘干。称取各粒级土壤样品40 g分别与20 g细石英砂混均,放进约80 mL小塑料盆中,塑料盆直径40 mm、高65 mm,每盆播黑麦草籽9粒,加水调节至土壤湿度为200 g/kg,放于温室内培养,每天观察出苗情况,并间苗,间苗后每盆定苗7株。培养期间用称重法浇适量去离子水,保持土壤湿度为200 g/kg。培养20天时加入浓度分别为7.3 mmol/L和22.1 mmol/L的磷、钾营养液各1 mL,补充黑麦草对其养分需求,每天浇水1~2次,以保持土壤湿度。
表1 不同施肥处理下各组分固持尿素15N含量 (mg/kg)Table 1 The content of urea 15N in aggregate grades under different treatments
培养30天后,分别采集黑麦草地上部和根系,烘干、称重、研磨,测定养分含量及15N丰度。植株的15N丰度采用ISOPRIME100/VARIO PYRO CUBE质谱分析仪测定。
1.4.1 各组分下黑麦草吸收尿素15N含量
式中:Nc为吸收尿素15N含量 (mg/g);B为黑麦草吸收尿素15N丰度 (%);C为自然丰度 (0.3663%);D为施用尿素15N丰度20.12%;T为黑麦草全氮含量 (mg/g)。
1.4.2 各组分下黑麦草吸氮量
式中:Nup为黑麦草吸收尿素氮量 (mg/盆);Nc为吸收尿素15N含量 (mg/g);mi为各组分黑麦草生物量(g/盆)。
1.4.3 各组分下黑麦草尿素氮利用率
式中:Nut为黑麦草尿素氮利用率 (%);Nup为黑麦草吸收尿素氮量 (mg/盆);X为各组分固持尿素氮含量(mg/kg);Ms为土壤质量0.04 kg/盆。
数据采用SAS8.0软件系统进行方差分析。
在不同施肥处理下,各组分的黑麦草生物量差异较大 (图1)。粗游离颗粒有机物和团聚体外部矿物结合有机物的黑麦草地上部生物量要显著大于细游离颗粒有机物和团聚体内部矿物结合有机物;团聚体内部矿物结合有机物组分的黑麦草生物量按照CK、NPK、NPKS、NPKM处理的顺序依次增加。在CK处理下,粗游离颗粒有机物下的黑麦草地上部、地下部生物量与团聚体外部矿物结合有机物下的持平,显著大于细游离颗粒有机物和团聚体内部矿物结合有机物培养下的;在NPK处理下,较高的生物量表现在团聚体外部矿物结合有机物组分,地上部生物量高出其他组分19.1~43.8 mg/盆,地下部高出8.1~13.9 mg/盆;在NPKM处理下,较高的生物量则出现在粗游离颗粒有机物组分,地上部生物量显著高出其他组分13.2~44.3 mg/盆,地下部则高出4.8~13.3 mg/盆;在NPKS处理下,地上部生物量在粗游离颗粒有机物和团聚体外部矿物结合有机物组分中持平,但对于地下部生物量,粗游离颗粒有机物组分要显著高出其他组分11.9~23.0 mg/盆。
图1 长期不同施肥处理下各团聚体中黑麦草生物量Fig. 1 The biomass of Loliumperenne L. in aggregate fractions under different treatments
由图2可以看出,黑麦草地上部、地下部尿素15N含量主要分布在粗游离颗粒有机物和团聚体外部矿物结合有机物中。粗游离颗粒有机物组分下黑麦草地上部、地下部尿素15N含量为1.6~3.3、0.7~1.3 g/kg;在团聚体外部矿物结合有机物组分下黑麦草地上部、地下部尿素15N含量为1.5~2.6、0.5~1.2 g/kg;其中,粗游离颗粒有机物组分中,CK、NPK处理较NPKS、NPKM处理显著高出了1.0~1.7、0.5~0.6 g/kg;而在团聚体外部矿物结合有机物组分中,CK、NPK处理较NPKS、NPKM处理显著高出了0.4~1.1、0.2~0.7 g/kg;在各个组分中,NPKM处理的黑麦草地上部、地下部尿素15N的含量均最低,表现出 NPKM < NPKS < NPK < CK 的规律。
从图3可以看出,黑麦草在粗游离颗粒有机物和团聚体外部矿物结合有机物两个组分中吸收更多的标记尿素氮量 (0.1~0.21 mg/盆),在细游离颗粒有机物和团聚体内部矿物结合有机物两个组分吸收不足0.05 mg/盆;在粗游离颗粒有机物组分下,CK、NPK处理下黑麦草所吸收尿素15N量较NPKS、NPKM处理高出0.04~0.07 mg/盆;在细游离颗粒有机物组分下,各处理之间没有显著差异,吸收尿素15N量为0.01~0.02 mg/盆;团聚体外部矿物结合有机物组分中的吸收量为0.10~0.20 mg/盆,比团聚体内部矿物结合有机物组分中高出0.06~0.12 mg/盆,团聚体外部在各处理间有差异,NPK处理显著高出CK 0.05 mg/盆,NPKM处理则显著低于CK 0.03 mg/盆,团聚体内部矿物结合有机物在各处理间没有显著差异。
图2 长期不同施肥下各团聚体中黑麦草的肥料氮含量Fig. 2 Fertilizer nitrogen contents of Loliumperenne L. in aggregate fractions under different treatments
图3 长期不同施肥下各团聚体中黑麦草总吸氮量Fig. 3 The total nitrogen uptake of Loliumperenne L. in aggregate fractions under different treatments
由图4可知,黑麦草在粗游离颗粒有机物、细游离颗粒有机物、内部矿物结合有机物和外部矿物结合有机物组分下对土壤15N的利用率分别为14.1%~19.3%、5.5%~15.4%、3.1%~4.9%和12.7%~23.6%,团聚体内部矿物结合有机物各处理间无显著差异,且N15利用率不足5%;在团聚体外部矿物结合有机物组分下,NPK处理利用率为23.6%,比CK处理显著高出约11个百分点,其他组分利用率没有显著差异 (12.7%~14.2%);在粗游离颗粒有机物组分下,NPKM处理利用率最大,显著高出CK处理5个百分点,其次是NPK处理,显著高出CK处理3个百分点;在细游离颗粒有机物组分下,CK分别比NPK、NPKS、NPKM显著高出4、9、10个百分点。
图4 不同处理不同组分下黑麦草对尿素氮的利用率Fig. 4 The fertilizer nitrogen use efficiency of Loliumperenne L. in aggregate fractions under different treatments
本试验结果表明,团聚体氮组分有效性除团聚体内部矿物结合有机物无差异外,其他三个组分均有显著差异。化肥配施有机肥处理使得粗游离颗粒有机物组分中氮素的有效性最高,单施化肥使团聚体外部矿物结合有机物组分的氮有效性最高,这三个组分差异的原因分析如下:
1) 本研究表明,长期施用有机肥,> 250 μm的粗游离颗粒有机物组分比例明显增加,< 53 μm的矿物结合有机物组分比例明显降低,团聚体的比例决定了团聚体氮素的储量。大团聚体增加,有机氮的储量响应增加,大团聚体的含量是影响团聚体水稳性的主要因素,因此有机氮的稳定性与大团聚体的含量呈正相关,有机肥的施用提高了大团聚体的含量进而有利于提高有机氮的稳定性[9]。另一方面,粗游离颗粒有机物 (> 250 μm) 组分的氮有效性提高 (图 4),主要是因为施用有机肥提高了大团聚体的微生物活性[10–11],进而促进了土壤氮矿化,提高了氮素的供应能力。刘晶等[12]研究结果表明,不同土地利用方式下土壤团聚体细菌生物量均在0.25~2 mm粒级下最高,相似研究也均发现大团聚体中微生物活性都高于小团聚体[13–15];另外,还有大团聚体相对疏松的团粒结构及微生物群落数量等因素,为氮素矿化过程提供了更适合的环境,促进了矿化过程的进行,进而提高了氮的有效性[16–18]。丛耀辉等[19]研究结果表明,各级团聚体有机氮组分及其矿化之间,土壤以粗游离颗粒有机物 (> 250 μm) 组分最大,是优势粒级,具有明显的固氮及释放能力。
2) 化肥配施秸秆和化肥配施有机肥处理下细游离颗粒有机物 (53~250 μm) 组分中的氮素的利用率不超过6%,有效性低 (图4)。原因可能为,① 该组分下固持氮含量很低,且化肥配施有机肥处理下微生物量较对照大,微生物本身也消耗一部分氮素,使得微生物与作物竞争氮素,作物可利用氮素变少;②尿素氮转化成的铵离子全部被土壤带负电荷胶体微粒中和凝聚,同时相对于粗游离颗粒有机物,细游离颗粒胶体的比表面积较大,为减少表面能,胶体也具有相互吸引、凝聚的趋势[20]。所以,氮素的有效性较低,此情况下可以合理加施速效氮肥。
3) 本研究发现,单施化肥处理使团聚体外部矿物结合有机物组分 (< 53 μm) 的氮素有效性明显较高。单施化肥,由于土壤中缺少有机肥中的有效胶结物质,使得土壤破碎,从而促进了小粒级团聚体的形成,小团聚体的比例升高。小粒级团聚体的比表面积大,对NH4+等阳离子吸附性强,储备了更多的易矿化氮;另一方面,小团聚体与酶类接触的面积大,如脲酶直接参与着土壤中含氮有机化合物的转化过程,从而有效地促进了有机氮的矿化,因此,小团聚体中含有比大团聚体更多的易矿化有机氮。邵兴芳等[21]对黑土旱田的团聚体氮矿化研究结果表明,<53 μm粒级团聚体组分中氮矿化量在所有粒级中最高;Craswell等[22]研究认为,不同粒级土壤团聚体经培养后,其氮矿化率随着团聚体粒径的减小而增大,使得小粒级团聚体对土壤养分储量的贡献率越来越突出,这些研究与本文结果类似。本试验还发现,在小粒级团聚体中,团聚体外部矿物结合有机物组分比内部矿物结合有机物组分上固持氮素有效性更高,说明了团聚体内部黏粒对化肥氮素的吸附能力更强。
总的来说,粗游离颗粒有机物和团聚体外部矿物结合有机物中氮素的有效性最高,其肥料氮的利用率可达到15%以上,其次为细游离颗粒有机物(53~250 μm),团聚体内矿物结合有机物中氮素的有效性最低。化肥配施有机肥不仅能够促进肥料氮在粗游离颗粒有机物组分中的积累,还提高了其有效性,这可能是施用有机肥提高氮肥利用率的机制之一。细游离颗粒有机物不仅氮素固持量很低,其有效性也较低。单施化肥处理的团聚体外部矿物结合有机物组分中氮的有效性较高。