基于红壤稻田肥力与相对产量关系的水稻生产力评估

2018-12-20 02:54柳开楼张会民韩天富黄庆海余喜初李大明胡惠文叶会财胡志华马常宝薛彦东
植物营养与肥料学报 2018年6期
关键词:红壤土壤肥力晚稻

柳开楼,黄 晶,张会民*,韩天富,黄庆海,余喜初,李大明,胡惠文,叶会财,胡志华,马常宝,薛彦东

(1 中国农业科学院农业资源与农业区划研究所/耕地培育技术国家工程实验室,北京 100081;2 江西省红壤研究所/国家红壤改良工程技术研究中心/农业部江西耕地保育科学观测实验站,江西南昌 330046;3 祁阳农田生态系统国家野外科学观测研究站/中国农业科学院农业资源与农业区划研究所,湖南祁阳 426182;4 农业农村部耕地质量监测保护中心,北京 100125)

红壤稻田主要分布在江西、湖南、湖北、浙江等省份,这些地区的水稻生产对国家的粮食安全至关重要。近年来,随着秸秆还田、冬季绿肥种植等技术的推广,该区域的土壤肥力总体上得到了改善[1,2]。研究表明,在化肥施用量相同的情况下,提高土壤肥力可以明显促进作物增产[3]。同时,土壤肥力的提升还可以有效降低水稻产量对外源肥料的依存率。很多长期试验结果表明,配施有机肥可以同时实现土壤肥力和产量的双提高,而不合理的化肥施用则导致土壤肥力和作物产量的显著降低[4–7]。因此,为实现我国的化肥“零增长”目标,通过提高土壤肥力来保证作物高产就显得十分重要。

土壤肥力质量是衡量土壤能够提供作物生长所需各种养分能力的重要指标。以往的研究主要通过Fuzzy、全量数据集、最小数据集等方法对土壤肥力指标进行加权,进而采用土壤肥力质量指数来量化土壤肥力水平[4,8–10]。包耀贤等[11]在研究长期施肥下土壤肥力的综合评价时发现,虽然因子分析法、相关系数法和内梅罗指数法均适用,但应首选内梅罗指数法,最后选相关系数法。邓绍欢等[8]研究表明,冷浸田土壤质量评价的最小数据集为pH、全氮、有效锰、Fe2+、C/N、线虫数量等6个指标。总之,目前的研究主要集中在土壤肥力质量评价方法的比较及其在不同土壤类型的适应性上,但也有研究关注土壤肥力质量与作物产量[12–13]及产量稳定性[14]的相互关系,Liu等[13]研究认为,水稻产量与土壤肥力质量指数可以用线性方程进行拟合,即水稻产量始终随着土壤肥力质量指数的增加而增加。而包耀贤等[15]的研究则表明,作物产量与土壤肥力质量指数呈极显著“S”型波尔兹曼生长模型关系,即当土壤肥力提高到一定程度时作物产量趋于稳定。然而,这些研究仅仅表明土壤肥力质量指数与作物产量及产量稳定性具有显著关系,却没有对土壤肥力质量指数与作物产量的量化关系进行验证。因此,本研究基于红壤稻田长期肥料定位试验,在多年土壤肥力数据库的基础上,采用Fuzzy方法对不同施肥处理的土壤肥力质量指数进行计算,构建土壤肥力质量指数与水稻相对产量的量化关系,并进一步结合进贤县域的数据对土壤肥力质量指数和相对产量的量化关系进行验证,以期明确土壤肥力质量评价对水稻生产的指导意义。

1 材料与方法

1.1 试验区概况

进贤红壤稻田长期定位试验设在江西省进贤县江西省红壤研究所试验基地 (116°20′24″E、28°15′30″ N),县域稻田土壤调研选择江西省南昌市进贤县,该地区为典型低丘地形 (海拨25~30 m,坡度5°)。中亚热带季风气候,无霜期约289天,年均降雨量约1537 mm,年均蒸发量约1150 mm,年均气温约18.0℃。

1.2 红壤稻田长期定位施肥试验

进贤红壤稻田长期定位试验始于1981年,供试土壤为第四纪红粘土发育的中度潴育型水稻土,其剖面构型为A–P–W1–W2–C。试验开始时耕层土壤pH 6.9、有机碳16.3 g/kg、全氮1.49 g/kg、全磷0.48 g/kg、全钾10.39 g/kg、有效磷 (NaHCO3-P) 4.15 mg/kg、速效钾 (NH4OAc-K) 80.52 mg/kg、粘粒 (< 0.001 mm)24.1%。共设9个处理,具体处理和施肥量见表1,每个处理3次重复,随机排列,小区面积46.7 m2。早稻、晚稻施肥量各占50%,氮磷钾化肥分别为尿素、钙镁磷肥、氯化钾,有机肥料为早稻季施紫云英 (来源于冬季小区内种植的紫云英),其鲜重22500 kg/hm2,含水量为70%,有机碳含量为467 g/kg,氮磷钾含量分别为4.0 g/kg、1.1 g/kg和3.5 g/kg;晚稻季施猪粪,其鲜重22500 kg/hm2,含水量为75%,有机碳含量为340 g/kg,氮磷钾含量分别为6.0 g/kg、4.5 g/kg和5.0 g/kg;氮肥60% 作基肥,其余40% 与全部的钾肥作追肥于水稻返青后施用;磷肥和有机肥全部作基肥。小区间用50 cm水泥田埂隔开,地表下埋深30 cm,地表上20 cm,灌水后和降雨前封堵小区缺口,以防串水串肥。双季稻种植制,密度为20 cm × 20 cm。所有小区的播种、移栽、施肥、打药和灌溉等日常管理措施保持一致并与当地习惯相同。水稻品种每5年更换一次。

表1 红壤稻田长期试验各处理的施肥量 [kg/(hm2·a)]Table 1 Fertilizer application amounts in each treatment of the long-term experiment in red paddy soil

1.3 进贤县域红壤稻田土壤调研

进贤县位于江西省南昌市,水稻土是进贤县主要的耕作土壤。水稻种植模式为早稻–晚稻–冬闲,面积达763.0 km2,占该县粮食种植总面积的89%,是鄱阳湖流域具有代表性的水稻种植区域。以进贤县第二次土壤普查的点位为基础[16],在充分考虑红壤稻田空间分布和晚稻种植分布状况的基础上,同时兼顾高、中、低产量的合理布设及空间上相对均匀的原则在全县共布设58个采样点,其中白圩乡6个点,池溪乡4个点,二塘乡4个点,架桥乡2个点,李渡镇3个点,罗溪乡1个点,梅庄镇4个点,民和镇3个点,南台乡农场1个点,七里乡1个点,前坊镇2个点,泉岭乡1个点,三里乡1个点,三阳集乡2个点,温圳镇3个点,文港镇3个点,下埠集乡5个点,衙前乡2个点,张公镇5个点,长山晏乡1个点,钟陵乡4个点。于2017年11月份分别采集耕层土壤样品和测定晚稻产量。具体采样点位见图1。

在采样过程中,通过实地调研发现,进贤县双季稻的氮磷钾肥用量与长期试验中2NPK处理基本相似,同时,由于冬季绿肥的大力推广,温圳镇、泉岭乡等约50% 的稻田实施了紫云英种植和还田。而由于运输繁琐和劳动力缺乏,全县已基本上没有鲜猪粪还田方式,但是,由于猪粪沼气工程的建设,在下埠集乡、衙前乡等有30% 左右的稻田进行了猪粪源的沼渣还田。因此,长期定位试验的处理包含了目前进贤县域的主要施肥措施,表明长期定位试验可以在一定程度上表征进贤县的施肥措施。

1.4 采样与分析方法

1.4.1 水稻绝对产量 在早稻和晚稻成熟期收获,各小区采取人工收割,脱粒后晾晒,称重,换算成每年每公顷籽粒产量。进贤县域各个点位的晚稻产量测定为每个点位随机收割3个点,每个点1 m2,人工脱粒、晾晒、称重。

图1 进贤县域红壤稻田采样点分布Fig. 1 Sample sites in Jinxian County, Jiangxi Province

1.4.2 水稻相对产量 有处理的相对产量均为各处理的水稻年产量占当年最高产量 (NPKM或2NPK处理) 的百分比。进贤县域各个点位的相对产量为各点位的晚稻产量占所有点位中最高产量的百分比。

1.4.3 土壤样品采集 从1981年开始,在每年晚稻收获后取0—20 cm的土壤样品,每小区随机采集5个点,同一小区样品混合后独立分装。进贤县域各点位的耕层土壤 (0—20 cm) 采集于2017年11月份进行,每个点位随机采集5个点,混合、风干、研磨。

1.4.4 土壤pH、有机质和氮磷钾测定 土壤pH为1∶2.5土水比浸提,用Mettler-toledo320 pH计测定;土壤有机质采用K2Cr2O7−H2SO4氧化法测定;有效磷采用NaHCO3浸提—钼锑抗比色法;速效钾采用NH4OAc浸提—火焰光度计法。以上指标测定的详细步骤参考《土壤农业化学分析方法》[17]。

1.4.5 土壤肥力质量指数计算 在前人研究的基础上[18–19],本研究选用包括土壤pH、有机质、有效磷和速效钾共4项土壤肥力指标作为此次土壤肥力综合评价的参考指标。首先,对上述各项土壤肥力质量指标建立与之对应的隶属函数,计算其隶属度值,以此来表示各肥力指标的状态值。结合《土壤质量指标与评价》[18]和酸性土壤的具体实际,确定土壤pH值在隶属度函数曲线转折点X1、X2、X3和X4的相应取值分别为4.5、5.5、6.0和7.0。土壤有机质、有效磷和速效钾在隶属度函数曲线转折点X1的相应取值分别为10 g/kg、5 mg/kg和50 mg/kg,X2的相应取值分别为40 g/kg、20 mg/kg和150 mg/kg。根据评价指标得分函数类型[18–19],可以得出各项肥力质量指标的隶属度值。

权重的计算步骤为:1) 建立各肥力质量指标的相关系数;2) 以某一肥力质量指标与其它肥力质量指标之间相关系数的平均值和所有肥力质量指标相关系数平均值总和所得到的比值,以此确定为单项肥力质量指标在表征土壤肥力质量中的贡献率,即权重系数。

由加乘法则,得到评价土壤肥力质量指数的综合性指标值SFI (soil fertility index)。计算公式为:

式中:SFI为土壤肥力质量指数;Wi 和Ni表示第i种肥力质量指标的权重系数和隶属度值。

1.5 模型构建与验证

以长期定位试验中2017 年各处理土壤肥力质量指数和相对产量的一元一次拟合方程为模型,结合2017 年进贤县域稻田土壤肥力质量指数进行相对产量的预测,并采用国际上常用的统计方法RMSE(root mean square error) 和RRMSE (relative root mean square error) 对相对产量的预测值和2017 年晚稻相对产量的实测值之间的符合度进行检验。具体公式如下:

式 (2) 和 (3) 中:Xo和Xs分别为实测值与预测值 (将县域尺度的土壤肥力质量指数代入长期试验中2017年土壤肥力质量指数与相对产量的拟合方程,从而获得县域尺度相对产量的预测值);n为样品数,且当RRMSE ≤ 25% 时模型可用。

数据处理采用Excel 2003,统计分析采用SAS 9.1,各处理水稻产量和土壤肥力质量指数差异采用LSD进行显著性分析 (P < 0.05)。土壤肥力质量指数与相对产量的量化关系采用线性方程进行拟合,采用ArcGIS 10.2软件进行Kriging插值和图形编辑及空间分析,制作进贤县域尺度的采样图、土壤pH、有机质、有效磷、速效钾、肥力质量指数和晚稻产量基础图件。其余图件采用Origin 8.1制作。

2 结果分析

2.1 不同施肥措施下红壤稻田年产量变化

在红壤双季稻区,不同施肥处理显著影响水稻产量 (图 2)。在 1981、1985、1989、1995、2002、2005、2012和2017年,各处理均呈现出NPKM和2NPK最高,其次为NPK和NP处理,NK、N、P、K和CK处理较低。与CK处理相比,NPKM和2NPK处理的年均产量分别增加了71.6% 和59.1%;NPK和NP处理分别增加了36.5% 和26.8%;而N、P、K和NK处理则增加不显著。同时,NPKM处理的年均产量也显著高于NPK处理 (增幅为25.7%)。

2.2 不同施肥措施下红壤稻田土壤肥力质量指数演变

基于Fuzzy土壤质量评价结果表明,红壤稻田不同施肥措施的土壤肥力质量指数存在明显差异 (图3),从1981年至2017年,均呈现出NPKM处理的土壤肥力质量指数最高,其次为2NPK和NPK处理,而NP、P、NK、CK、N和K处理较低。与CK处理相比,NPKM、2NPK和NPK处理的年均土壤肥力质量指数分别增加了64.1%、47.3%、27.7%,且NPKM处理比NPK处理增加了28.5%;但NP、NK、P、N和K处理则与CK相比无显著差异。

2.3 土壤肥力质量指数与水稻相对产量的相互关系

土壤肥力质量显著影响水稻产量。除了1981年之外,其余年份土壤肥力质量指数与水稻相对产量均呈显著的正相关关系 (P < 0.05),且均可以用线性方程进行拟合 (表2)。土壤肥力质量指数每增加0.1 个单位,1985、1989、1995、2002、2005、2012和2017年水稻相对产量分别增加了8.7%、22.6%、8.9%、9.8%、7.2%、12.9% 和10.3%。

2.4 土壤肥力质量指数与水稻相对产量的相互关系在县域尺度上的应用

2017年进贤县的土壤pH值在4.32~5.29之间,变异系数为4.29%,土壤有机质、有效磷和速效钾分布范围分别为11.37~49.89 g/kg、11.76~134.27 mg/kg和22.50~144.03 mg/kg,变异系数分别为19.58%、61.75% 和42.19%。全县土壤pH、有机质、有效磷和速效钾的平均值分别为4.75、34.54 g/kg、39.37 mg/kg和61.94 mg/kg。在县域尺度上,土壤pH和有机质的分布趋势大体相似 (图4)。具体呈现出西部地区 (架桥镇和泉岭乡全部、温圳镇和文港镇西部) 较高,东北部环湖地区 (三里乡、梅庄镇和二塘乡大部) 较低的趋势;同时,东南部地区 (下埠集乡和衙前乡大部) 的有机质含量也显著高于其他区域。但是,土壤有效磷和速效钾的分布趋势则明显不同于pH和有机质,有效磷含量较高的区域主要为东南部边缘地区 (衙前乡)、西部边缘 (温圳镇的部分) 以及东北部钟陵乡和梅庄镇的一小部分地区;速效钾含量较高的区域主要为南部边缘地区 (下埠集乡和衙前乡的大部分地区)、东北部的部分地区 (梅庄镇和三里乡) 以及中部的部分地区 (民和镇、七里乡等乡镇的小部分);而西南大部分地区的有效磷和速效钾含量均较低。

图2 长期施肥各处理的水稻年产量变化Fig. 2 Change of annual rice yield of different treatments under long-term fertilization

图3 长期施肥各处理土壤肥力质量指数变化Fig. 3 Change of soil fertility index under different treatments in long-term fertilization

表2 土壤肥力质量指数 (y) 与水稻相对产量 (x) 拟合方程Table 2 The fitted equations between soil fertility index (x)and relative yield (y)

Fuzzy评价方法显示,进贤县2017年的土壤肥力质量指数在0.34~0.92之间,平均为0.56。图5结果显示,该区域土壤肥力质量差异较大,土壤肥力质量指数较高的区域主要有南部地区 (衙前乡和下埠集乡大部分)、西部边缘 (温圳镇和文港镇的部分地区) 以及东北部 (梅庄镇) 和中部 (民和镇、七里乡)的小部分地区,而西南大部分地区和东部环湖地区的土壤肥力质量指数较低。

进贤县2017年晚稻单产在3133~8833 kg/hm2之间,平均晚稻产量为5778 kg/hm2。图6结果显示,该区域水稻产量的分布趋势主要呈现出中部地区 (民和镇、七里乡和前坊镇),东南部地区 (下埠集乡、衙前乡、钟陵乡和池溪乡) 和西部地区 (架桥镇、温圳镇、文港镇) 的产量较高,而东北部环湖地区(三里乡、梅庄镇、二塘乡和南台乡),中南部地区(张公镇、白圩乡、长山晏乡和李渡镇) 的产量较低。

为进一步验证土壤肥力质量指数与水稻相对产量的拟合方程,在计算2017年进贤县域的土壤质量指数基础上,结合长期试验中2017年的一元一次拟合方程 (y = 1.6263x − 0.2298) 预测了2017年进贤县域的晚稻相对产量。图7结果表明,预测的水稻相对产量与实际的水稻相对产量高度吻合 (R2为0.5268,P < 0.01,RRMSE小于25%),说明采用典型点位的一元一次方程可以用来预测和评估该地区县域尺度的水稻生产能力。

3 讨论

图4 进贤县域土壤pH、有机质、有效磷和速效钾含量Fig. 4 Distribution of soil pH and contents of soil organic matter, available phosphorus and potassium in Jinxian County

化肥配施有机肥是提高土壤肥力与作物产量的重要途径[20]。在红壤稻田上,不同施肥处理的水稻产量和土壤肥力质量指数差异较大,但所有处理中均呈现出长期有机无机肥配施的水稻产量和土壤肥力质量指数最高,其水稻产量和土壤肥力质量指数分别比化肥处理增加了28.8% 和26.9%。这与前人的研究结果一致[4,21–22]。原因主要是:1) 与化肥处理相比,有机无机肥处理氮磷钾的养分投入量明显高于化肥处理,充足的养分投入有利于增强水稻的养分吸收能力[23],从而保障水稻高产。2) 有机无机肥处理可以显著改善土壤物理结构[24],增加土壤有机质和氮磷钾养分等肥力指标[25–27],而土壤肥力的提升是水稻增产的主要驱动因子之一[28–30]。因此,投入有机肥是红壤稻田实现“藏粮于土、藏粮于技”的关键。

图5 进贤县域土壤肥力质量指数分布Fig. 5 Distribution of soil fertility index in Jinxian County

图6 进贤县域晚稻产量分布Fig. 6 Distribution of late rice yield in Jinxian County

图7 预测与实际相对产量的一致性Fig. 7 Agreement of the predicted and measured values of relative yield

很多研究表明,土壤肥力质量与作物产量存在显著的相关关系[3,12–14],在潜育化稻田上,土壤肥力质量指数与产量的量化关系可以用线性方程进行拟合[13];然而,也有研究表明,土壤肥力质量指数与水稻产量之间的量化关系用一元二次方程进行拟合较好[14],这主要与土壤肥力水平和障碍因子有关[13,31],因为作物产量在土壤肥力增加到一定程度时逐渐趋于稳定[13]。因此,研究水稻产量与土壤肥力质量的量化关系可以为红壤区的水稻生产潜力评估提供依据。前人研究表明,与绝对产量相比,相对产量可以通过削减年际间的产量变异 (气候因子、品种特性等对产量的影响) 而更为准确地表征某一区域的水稻产量变化[32]。在本研究中,红壤稻田的土壤肥力质量指数与水稻相对产量的正相关关系可以用线性方程进行拟合,这与前人在南方水稻土上的结果相似[13,31]。说明该区域的水稻土肥力质量和水稻产量均未达到稳定,这主要是由于本研究长期试验中的水稻品种每隔5年更新一次主推品种,除了2倍氮磷钾用量处理之外,其余处理的施肥用量则一直是1981年的水平,从而导致大部分处理的产量潜力没有得到充分发挥[33]。通过线性方程发现,从1985年至2017年,当土壤肥力质量指数每增加0.1个单位,水稻相对产量增加7.2%~22.6%,但不同年代间水稻相对产量的增幅差异较大。这可能与本研究采用的土壤肥力质量评价方法中数据集的指标类型和数量有关,因为在本研究中,Fuzzy方法计算的土壤肥力质量指数仅仅考虑了土壤pH、有机质和有效磷、速效钾指标,而有关土壤物理、生物学指标则没有予以考虑,从而导致本研究计算出的土壤肥力质量指数可能不能准确评估各施肥处理真实的土壤肥力质量变化[34–35],因此,有关长期施肥的土壤肥力质量评估指标还需进一步优化[36]。

在本研究中,2017年进贤县的土壤肥力质量指数和晚稻产量的分布趋势大体相似。具体呈现出西部地区 (架桥镇和泉岭乡全部、温圳镇和文港镇西部) 和东南部地区 (下埠集乡和衙前乡大部) 较高,其次为中部地区 (前坊镇、七里乡、池溪乡、民和镇、罗溪镇等),而东北部环湖地区 (三里乡、梅庄镇和二塘乡大部) 较低。原因主要是秸秆还田、绿肥种植还田和有机肥施用等在全县的相关乡镇均有不同程度的应用[2];再加上水稻土类型、水稻品种等因素的影响,从而导致县域尺度上土壤肥力质量和水稻产量变化幅度较大。这与樊亚男等[37]的结果相似,但由于采用的土壤肥力质量评价方法中数据集的指标类型和数量不同,导致土壤肥力质量指数的变化幅度不一。同时,长期施肥试验各处理的土壤肥力质量指数的范围 (0.34~0.97) 涵盖了县域尺度的土壤肥力质量指数范围 (0.34~0.92)。实地调研也发现,进贤县双季稻的氮磷钾肥用量与长期试验中2倍氮磷钾用量处理基本相似。这充分说明,长期施肥定位试验能够在一定程度上表征县域尺度的施肥模式和土壤肥力状况。此外,相对产量可以在一定程度上去除气候因子、品种特性等对水稻绝对产量的干扰[32]。在此基础上,本研究进一步利用长期试验点位的线性方程模型,根据2017年进贤县域的土壤肥力质量指数预测了对应点位的水稻相对产量,结果表明,水稻相对产量的预测值与实测值高度吻合 (RRMSE均小于25%)。证明通过土壤肥力质量指数可以较为准确地评估某一区域的水稻产量变化趋势。但是,在水稻生产中,除了土壤肥力之外,排灌条件、品种选择等也是影响水稻产量的重要因子[38–40],因此,基于土壤肥力质量指数进行某一区域水稻生产能力的评估还有待深入研究和不断完善。

4 结论

长期化肥配施有机肥是提高红壤稻田土壤肥力质量与水稻产量的重要途径。红壤稻田土壤肥力质量指数与水稻相对产量存在显著的线性关系,土壤肥力质量指数增加0.1个单位,水稻相对产量增加7.2%~22.6%。县域尺度的验证结果表明,基于土壤肥力质量指数预测的水稻相对产量和实际相对产量高度吻合,表明通过土壤肥力质量指数能较为准确地评价该地区县域尺度的水稻生产力。

猜你喜欢
红壤土壤肥力晚稻
行间生草对深州蜜桃园土壤肥力、pH和盐度影响
硅基膜材缓控释肥在红壤中的氮素释放特征研究
中国三大薯区土壤养分状况及土壤肥力质量评价
初探热脱附技术在有机污染红壤修复的应用
广西乐土成功召开“乐土肥地龙2015晚稻销售启动会”
洞庭湖区莲藕套种晚稻高效栽培技术
不同追肥时期和施肥量对机插双季晚稻产量和经济效益的影响
安徽安福县:发放晚稻测土配方施肥卡
洛阳丹参基地土壤肥力质量评价与培肥对策
长期施肥下红壤旱地土壤CO2排放及碳平衡特征