渗透数形结合思想提升小学生数学素养

2018-11-30 07:03江义玲
读写算 2018年10期
关键词:数形直观平行四边形

江义玲

摘 要 数形结合思想是数与形之间的对应关系,通过数与形的相互转化,将抽象的数学语言与直观的图形结合起来解决问题的思想方法。数形结合思想是数学中最重要、最基本的思想,是解决许多数学问题的有效思想,利用数形结合能使“数”和“形”统一起来。以形助数,以数辅形,可以使许多数学问题变得简易化。关键词 数形结合;提高;素养中图分类号:F124.6 文献标识码:A 文章编号:1002-7661(2018)10-0192-01 华罗庚教授曾说:“数无形,少直观;形无数,难入微。”那么如何在教学中渗透数形结合的思想。下面谈谈自己在教学实践中的一些做法:一、深研教材,有效滲透数形思想小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法?在学生获得知识和解决问题的过程中能有效地引导学生经历知识形成的过程,让学生在观察、对比、分析、抽象、概括的过程中看到数学知识蕴涵的思想。如一年级下册“两位数加减一位数和整十数“35-2和35-20内容时,教师可提出问题,这两题怎么计算?让学生说出算法,再根据学生的回答分别写出数形图,并写出想的过程,然后进一步追问:“有没有不同的算法?”激发学生思考,开拓学生的学习思维。最后进一步问:计算35-2,能不能先用十位上的3减2等于1,结果35-2等于15对吗?让学生思考讨论,产生思维的碰撞,让学生的思维碰撞出智慧的火花。接下来让学生用摆小棒验证,教师可充分利摆小棒,使学生明白:因为35中的3表示3个十,5表示5个1,计数单位不同,所以不能用十位上的3减2,可以用5个1减2个1等于3个1,它们的计数单位都是1,再和3个十合并起来等33。通过摆小棒有效地渗透数形结合,使问题简明直观。二、突破难点,巧用数形结合思想数形结合不仅是一种数学思想,也是一种很好的学习方法。在教学中那些学生觉得难以理解的或是易出现错误或混淆的内容,教师可充分利用“形”,把抽象的问题变得直观、形象,丰富学生的表象,引发联想,引导学生探索规律,得出结论。如西南大学附属小学的一位老师执教的“植树问题”,她在教学中把一一对应数学思想方法作为支点,借助生活中的实例康师傅3+2饼干,手指、路灯、树,课件演示,从而引出间隔与间隔数,为新课学习作铺垫,再出示例题:为了美化环境,学校准备在一条长20米的小路一侧种小树,每隔5米种一棵,一共需要多少棵树苗?教师应用学生已有的经验来画示意图,模拟种树,再将学生画的示意图展示交流,根据示意图,结合一一对应思想,突出了数形结合的思想,并让学生感受生活中洋溢着数学知识,将抽象的数学语言与直观的图形相结合,使概念更直观更形象,有利于学生的理解和掌握。学生根据示意图,很快得出解题方法。这种加强了数与形之间的联系,利用数形结合,线段图直观有助于学生的学习,化解了难点,从而得出模型:两端都种:棵数=间隔数+1,只种一端:棵数=间隔,两端都不种:棵数=间隔数-1,最后在设计练习把数字变大,让学生发现用画图麻烦,从而考试用列算式来解决,也就是让学生应用建构的模型,还得让学生思考,什么情况下加1、减1或不加1也减1,说说理由,让孩子产生认知冲突。有的学生就说了“我不用画那么多,可以先把数字变小,画图,根据图形便知道是属于哪种种法,然后可用列式解决。这节课学生不仅学会运用数形结合,也懂得化难为易,最后应用模型解决问题的能力,也培养了学生的逻辑思维能力。三、培养兴趣,渗透数形结合思想数学是一门抽象的知识,在学生看来是桔燥乏味的,抽象的,只有让学生对数学产生兴趣、产生求知的欲望,课堂数学才能达到良好的效果。例如在教学“平行四边形的面积”中,通过出示平行四边形图片,鼓励学生如何将平行四边形转化成学过的图形并思考运用所学过的知识来理解平行四边形的面积计算方法的过程中,让学生动手操作,通过自己的实际操作学生有可能将其分成一个梯形和一个直角三角形或两个直角三角形和一个长方形又或者其他别的图形,然后教师再引导“能不能将图形组合成我们学过的图形呢”,由此学生再通过想像与拼摆操作验证是否能转化成长方形。在这些实际操作中,学生不仅加深了对图形的认识,也增加了对美的认识,充分提升了他们的鉴赏能力。总之,在教学中要注重数形结合思想方法的培养,在培养学生数形结合思想的过程中,要充分挖掘教材里面的核心内容,将数形结合思想渗透于具体的问题中,在解决问题中让学生正确理解“数”与“形”的相对性,使之有机地结合起来。抓住数形结合思想教学,不仅能够提高学生数形转化能力,还可以提高学生的迁移思维能力、分析问题能力及解决问题的能力,对学生今后的数学学习和知识的应用将有深远的影响。数形结合思想又不像数学知识,解题方法那种具有某种形式,只是体现为一种意识或观念,长期渗透才能逐渐为学生所掌握。因此,教师应做教学的有心人,从学生发展的全局着眼,从具体的教学过程着手,有目的、有计划、有系统,适时适度以渗透,使数形结合思想能始终贯穿在传授数学知识的过程中,成为一种有意识的教学活动。只有这样,数形结合思想方法的教学才能落到实处,学生才能逐步形成数形结合思想,并将其作为学习数学,其数学素养才能得以提升。

猜你喜欢
数形直观平行四边形
核心素养下“几何直观”在教学中的实践与思考
数形结合 相得益彰
平行四边形的烦恼
以数解形精入微以形助数达直观
简单直观≠正确
数形结合思想及其应用
数形结合思想及其应用
谈数形结合思想在高中数学中的应用
“平行四边形”易错题
数形结合的实践探索