李汴生,卢嘉懿,阮 征
植物乳杆菌发酵不同果蔬汁风味品质研究
李汴生1,2,卢嘉懿1,阮 征1
(1. 华南理工大学食品科学与工程学院,广州 510640; 2. 广东省天然产物绿色加工与产品安全重点实验室,广州 510640)
乳酸菌发酵给果蔬汁带来的风味变化及其适配性是影响品质的重要因素,用植物乳杆菌LP-115 400B分别发酵橙汁、苹果汁、梨汁、葡萄汁和青瓜汁,通过静态-顶空固相微萃取(headspace solid-phase microextraction, HS-SPME)和气质联用(gas chromatography-mass spectrometry, GC-MS)分析各果蔬汁发酵前后挥发性风味物质以及游离氨基酸、糖和酸等滋味物质的变化,并结合定量描述分析(quantitative descriptive analysis, QDA)方法进行感官评价,探索乳酸菌发酵对果蔬汁风味感官品质产生的影响和适配性问题。乳酸菌发酵代谢对不同果蔬汁风味影响差异较大。在发酵后的果蔬汁中,挥发性风味物质种类增加,其中醇酯类物质增加明显,有利于酯香型果汁果香和花香的突出(如苹果汁和梨汁);而醇香型青瓜汁的酒味、刺激性气味增加;萜烯类物质变化使得橙汁新鲜气息降低,发酵气味增强。果蔬汁中氨基酸变化显示出其与挥发性风味物质存在相互转换的关联性。发酵后当糖酸比适中时(梨汁21.00,苹果汁17.79),味感酸甜适度。
菌;发酵;果汁;挥发性风味物质;游离氨基酸;感官评价
乳酸菌发酵果蔬汁是近年来最受关注的益生菌饮品之一,除了其为消费者带来的果蔬汁与益生菌相得益彰的营养健康价值之外,乳酸菌发酵给果蔬汁带来的风味变化也是吸引消费者的重要因素。现今不乏对乳酸菌在果蔬汁中的代谢研究,但在乳酸菌发酵果蔬汁风味变化的特性方面仍缺乏探索[1-2]。
乳酸菌通过作用于蛋白质、糖、脂肪及其他物质,从而产生挥发性风味物质和非挥发性滋味物质[3],进而改变果蔬汁的风味组成。其中,挥发性风味物质是影响果蔬汁风味及消费者接受度的重要因素[4],乳酸菌发酵可以增加果蔬汁挥发性风味物质种类并改变其组成结构:与传统果汁加工过程相比,石榴汁[1]通过乳酸菌发酵可增强其风味,并减少醛类等不期望的挥发性物质;混合莓汁[5]经过乳酸菌发酵后具有抗氧化性的苯甲酸等挥发性物质含量显著增加而萜烯类物质减少。
但现今对果蔬汁发酵后风味的研究多是针对单一的果蔬,对乳酸菌发酵果蔬汁风味适配性的问题仍缺乏系统的探讨。并且现今研究多只针对挥发性风味物质的变化,没有结合其他影响风味品质的呈味物质进行研究。例如游离氨基酸除了其本身作为呈味物质之外,游离氨基酸还会被乳酸菌利用而产生一系列挥发性风味物质[3];乳酸菌发酵发生的变化以及对果蔬汁风味的影响仍需深入研究。
本文选取常用于发酵果蔬汁的植物乳杆菌为发酵菌种[6],作为植物源乳酸菌,植物乳杆菌在果蔬汁中适应性较广,多种果蔬汁经植物乳杆菌发酵后,在感官、卫生、营养、货架期等性质方面都得到提升[7-8]。本文以酯香型的苹果和梨,醇香型的葡萄和青瓜,以及以萜烯类物质为主的脐橙为研究对象,测定不同果蔬汁经发酵前后挥发性风味物质、游离氨基酸、总酸、总糖的变化,并结合定量描述分析(quantitative descriptive analysis, QDA)对发酵果蔬汁风味品质进行感官评价分析,通过比较不同的果蔬汁经乳酸菌发酵后变化的异同,探索乳酸菌发酵果蔬汁中影响风味的物质变化规律,以及其对果蔬汁风味感官品质产生的影响和风味适配性问题,以期为通过乳酸菌发酵定向改变果蔬汁的风味及生产高品质的乳酸菌发酵果蔬汁提供依据。
市售脐橙、红富士苹果、蜜梨、雨水红葡萄、青瓜,选择成熟度合适、无明显缺陷的果品;直投式植物乳杆菌)菌粉LP-115 400B,杜邦·丹尼斯克公司提供。
安捷伦7890B-7000C三重四级杆气质联用仪;手动进样柄65m聚二甲基硅氧烷/二乙基苯(polydimethylsiloxane/ divinylbenzene,PDMS/DVB)萃取头,美国Supelco公司;全自动氨基酸分析仪L-8900,日本日立;LDZX-50KBS立式压力蒸汽灭菌锅,上海申安医疗机械厂;SPX-150D-Z生化(恒温)培养箱,上海博讯实验有限公司医疗设备厂;752 N紫外可见分光光度计,上海精密科学仪器有限公司;HR1895榨汁机,飞利浦(中国)投资有限公司等。
1.3.1 样品处理
脐橙洗净去皮,苹果、梨、葡萄、青瓜洗净,用榨汁机分别榨汁,过100目纱布;每150 mL分装于250 mL洁净锥形瓶中,硅胶塞密封,将果汁迅速加热至80 ℃,水浴保温10 min后用迅速冷却至40 ℃,接种植物乳杆菌(每100 mL果汁接种0.01 g菌粉),37 ℃恒温箱静置发酵24 h,此时各果蔬汁中活菌数和pH值都达到稳定。取发酵前后的样品(0和24 h)进行对比。
1.3.2 指标测定
总酸:参照GB/T 12456-2008采用酸碱滴定法;总糖:采用3,5-二硝基水杨酸比色法测定[9];pH值:参考GB 10468-1989采用电位差法;活菌数:参考GB 478935-2010采用稀释平板计数法进行测定。
1.3.3 挥发性风味物质测定
HS-SPME 方法:将初次使用的固相微萃取的萃取头(PDMS/DVB 65m)在气相色谱的进样口老化,老化温度为250 ℃,载气体积流量为1.2 mL/min,老化时间为1 h。准确移取10 mL 样品于20 mL螺口进样瓶中,加入3.0 g NaCl,促进香气成分的挥发[10],用聚四氟乙烯隔垫密封,于磁力搅拌器中平衡,平衡温度为45 ℃,平衡时间为20 min。平衡后将SPME萃取头通过隔垫插入进样瓶,插入深度为1 cm,推出纤维头,使纤维头置于样品瓶顶空进行吸附,吸附时间为40 min,随后取出萃取头,并立即将萃取头插入气相色谱仪的进样口,插入深度为2 cm,推出纤维头,解析5 min,同时启动仪器收集数据。
GC条件:DB-5MS毛细管色谱柱(30 m×0.25 mm,0.25m);进样口温度250 ℃,载气为He气(纯度99.999%),流速1.93 mL/min。不分流进样。升温程序:起始温度为40 ℃,保持3 min后以4 ℃/min的速度升温至120 ℃,再以6 ℃/min的速度升温至240 ℃,保持9 min。
MS条件:电子轰击电离,电子能量为70 eV,离子源温度为230 ℃,接口温度为230 ℃,质量扫描范围为质荷比35~500。
1.3.4 游离氨基酸测定方法
使用1%的三氯乙酸溶液将果汁浓度稀释到10%,8 000 r/min速度离心15 min,取上清液过0.45m滤膜上机测定。
1.3.5 感官评定
感官评价小组由10名事先经过培训的食品专业人员组成(22~30岁,男女均等),评价特性及描述见表1,而评价人员的筛选基于他们区分和描述以下特性的能力。评价小组在品尝前需嗅闻样品。每个样品(20 g)在室温下被随机编号和品尝,配有无盐的小饼干和纯净水,并平行测定3次,小组成员单独在房间里对样品进行评价,评价分数根据特性等级强弱分为10个等级:0分(极弱)~10分(极强)。
表1 果蔬汁及发酵果蔬汁感官描述及定义[1]
1.3.6 数据分析
挥发性风味物质定性主要是由GC-MS中NIST14质谱数据库、匹配度和保留时间对各个物质进行检索。选择匹配度大于85的物质作为有效的香气成分[11-12],按峰面积归一化进行相对定量,计算挥发性风味物质的相对百分含量。
总糖和总酸数据均为平行测定3次,用Excel 2007分析均值和偏差。用SPSS20.0对感官评价数据进行主成分分析(principal component analysis,PCA):将数据标准化降维,并进行因子分析提取主成分。采用Origin 9.0进行作图。
果蔬汁发酵后风味的变化与乳酸菌代谢反应(氧化反应、酯化反应和醇化反应等)产物相关,如表2所示,发酵后各果蔬汁挥发性风味物质种类数量均增加。各果蔬汁发酵后醛类物质含量均显著减少,醛类是一种不稳定的化合物,且高浓度的醛类物质会产生异味,醛类物质在微生物代谢活动下极易分解为醇或被氧化为酸[13],外源性乳酸菌会将果蔬汁中的醛类物质更多的还原成为醇类[13],醇类物质的增加进而会使相应的酯类物质增加[3],这也是发酵果蔬汁中醛类物质减少,而醇类、酯类物质增多的原因。而芳樟醇、正己醇等醇类物质和酯类物质是产生浓郁水果香味的重要物质[13]。
苹果汁和梨汁中酯类物质占比均40%左右,发酵后苹果汁中的典型香气酯类2-甲基丁酸己酯,和梨汁中的典型香气酯类乙酸乙酯等的占比均提高,乙酸乙酯有可能是在乳酸菌柠檬酸发酵作用过程中产生的[14],熊涛等[15]也研究发现胡萝卜浆经过植物乳杆菌发酵后烯萜类物质减少,醇酯类物质增加,赋予胡萝卜浆清香。李维妮等[11]研究表明当苹果汁中醇类、酯类总含量增加时能赋予苹果汁更强烈的果香、青香和花香。可见植物乳杆菌发酵有利于苹果汁和梨汁酯香的突出。
青瓜中的典型香气物质是顺-3-壬烯-1-醇,黄瓜醇(反式,顺式-2,6-壬二烯醇),未发酵青瓜汁中香气物质以顺-3-壬烯-1-醇为主,发酵后黄瓜醇(反式,顺式-2,6-壬二烯醇)的含量显著增加,未发酵葡萄汁中香气物质以反式-2-己烯醇、1-壬醇等醇类物质为主,发酵后则产生了大量的苯衍生物及萘类稠环芳香烃,烷烃类物质主要来源于脂肪酸烷氧自由基的断裂[16]及对氨基酸的降解代谢过程。在植物乳杆菌发酵的石榴汁[1]中亦出现了相似的情况。
橙汁的挥发性风味成分以萜烯类物质为主,其中以D-柠檬烯最多。萜烯类物质除了天然存在于植物中之外,微生物代谢过程中也有可能合成萜烯类物质,糖类物质在糖苷酶的水解作用或酸性条件下会水解成与松树香和橘香有关的萜烯类物质[17]。橙汁经过发酵后新增的蒎烯、水芹烯、松油烯等使发酵橙汁松树气味增强,新产生的中长链饱和酮使脂肪味加强。而月桂烯、柠檬醛、辛醛、癸醛无法检出,导致橙汁的新鲜橘香风味稍有减弱,而类似松树气息的发酵风味增强。
值得注意的是,发酵后的果蔬汁中均不同程度的增加了具令人愉快的水果香气的苯甲醇[18],具淡玫瑰香味的苯乙醇[19],具杏仁味[20]、甜樱桃味[21]和抗氧化性[5]的苯甲醛,氨基酸降解产生的小分子物质苯乙醛[19]和其他苯衍生物。植物乳杆菌的发酵作用,在一定程度上可以丰富果蔬汁的风味。park等[5]研究发现经植物乳杆菌发酵的混合莓汁中苯甲酸和苯甲醛的含量显著增加。另外,在分别用嗜酸乳杆菌、干酪乳杆菌和植物乳杆菌发酵的腰果梨汁[14]中,只有植物乳杆菌发酵的果汁中发现了苯丙醇。研究表明,乳酸菌发酵作用可以使得游离氨基酸和酸、醇、醛等物质间相互转换,发酵果蔬汁中苯衍生物等物质的产生与苯丙氨酸有关[3, 19]。
表2 不同果蔬汁发酵前后主要挥发性成分相对百分含量
注:缩写表示为:AJ(苹果汁)、AF(发酵苹果汁)、PJ(梨汁)、PF(发酵梨汁)、OJ(橙汁)、OF、(发酵橙汁)、CJ(青瓜汁)、CF(发酵青瓜汁)、GJ(葡萄汁)、GF(发酵葡萄汁);由于各果蔬汁检测出挥发性风味物质种类太多,表2中只列出部分物质;“–”表示这种物质未检测到。
Note: Abbreviations: AJ, apple juice; AF, fermented apple juice; PJ, pear juice; PF, fermented pear juice; OJ, orange juice; OF, fermented orange juice; CJ, cucumber juice; CF, fermented cucumber juice; GJ, grape juice; GF, fermented grape juice; “–”, not detected. Only principal compounds are listed in the table.
表3为果蔬汁发酵前后游离氨基酸质量分数变化情况,虽然各果蔬汁游离氨基酸变化不一,但氨基酸含量阈值比[23-23](ratio of content and taste threshold,RCT)均远大于1,表明对果蔬汁的风味均有一定影响。
植物乳杆菌具有多种氨基酸营养缺陷性,因此必须依赖外部氨基酸来增长代谢[24],而微生物中酶的作用又会使蛋白质分解产生氨基酸。除了葡萄汁的游离氨基酸总量稍有增加以外,其他果蔬汁发酵后游离氨基酸总量均显著减少。其他学者也发现植物乳杆菌发酵的石榴汁[2]和番茄汁[13]中游离氨基酸总量也呈现减少的趋势,但双歧杆菌发酵的苹果汁、柑橘汁和梨汁中每种氨基酸含量均较相应未发酵果汁高[25]。可见果蔬汁中游离氨基酸代谢规律与菌种特性密切相关。
根据氨基酸呈味不同进行分类讨论,各果蔬汁发酵后甜味氨基酸总量均显著减少,青瓜汁减少近90%;除葡萄汁以外,呈现鲜味的氨基酸总量亦均显著减少;而发酵后芳香族氨基酸总量均有所增加或基本持平,尤其是青瓜汁和葡萄汁中的苯丙氨酸(Phe)发酵后分别增加5倍和6倍,与其表2中挥发性风味物质中相应出现和增加的苯甲醇、苯乙醇和苯衍生物相呼应,证实了在乳酸菌在果蔬汁代谢过程中游离氨基酸与挥发性风味物质相互转换的关联性[3]。
当初始活菌数为107cfu/mL时,植物乳杆菌在各果蔬汁中均长势良好,发酵24 h后活菌数均能达109cfu/mL。在图1和表4中,发酵前12 h,植物乳杆菌在醇香型的葡萄汁和青瓜汁中增长代谢速度更快,24 h各果蔬汁中活菌数和pH值基本达到稳定,此时葡萄汁、青瓜汁和脐橙汁中活菌数较苹果汁和梨汁更高。当果蔬汁中活菌数更高时,能更有效地在人体肠道发挥益生作用[26]。但从风味角度而言,适宜控制乳酸菌的代谢才能有更理想的风味。结合GC-MS和感官评定的数据,对于青瓜和脐橙汁,降低初始发酵活菌数、提前终止发酵、后期兑入一定比例原果汁等调节手段都或有助于优化其风味体验。
表3 不同果蔬汁发酵前后游离氨基酸质量分数
植物乳杆菌在各果蔬汁中利用糖、氨基酸等营养物质进行代谢,使得果蔬汁中总酸含量增加、总糖含量下降,从而使得糖酸比下降。图2中,梨汁和苹果汁初始总糖含量较高,发酵后糖酸比适中(分别为21.00 与17.79),均表现出酸甜适度的味感;由于橙汁和青瓜汁初始总糖含量较少,发酵后糖酸比均较低,表现出过酸的味感,可考虑前期或后期添加糖或代糖进行补偿。
挥发性风味物质和滋味物质的种类及数量的差异会影响消费者的喜好和选择[27],图3中发酵果蔬汁与未发酵果蔬汁风味感官评分有明显区分。与未发酵果蔬汁相比,除甜味明显下降外,其他味感评价分值均有不同程度上升,其中果味、花香、发酵的味道和酸味增加明显(尤其是发酵苹果汁和发酵梨汁),这与发酵后果蔬汁中总酸、醇类和酯类增加有关。甜味下降与总糖下降、甜味氨基酸含量减少相关。风味感官评价PCA分析图中发酵青瓜汁与其他发酵后的果蔬汁差异大,是青瓜汁发酵后醇类物质增多,糖酸比较低,使得刺激性味、酒味、酸味强引起的。针对各发酵果蔬汁和未发酵果蔬汁,进行了基于9个属性的感官评估,运用PCA对数据进行分析。图4中与第1主成分有高的相关性的主要是酸味、醋味、甜味、涩味,与第2 主成分有高的相关性的主要是花香、果香、刺激味感。2个主成分方差贡献率依次为40.61%和39.00%。
图1 不同果蔬汁发酵前后活菌数变化
表4 不同果蔬汁发酵前后pH值变化
图2 不同果蔬汁发酵前后总酸及总糖含量变化
图3 果蔬汁发酵前后(0、24 h)感官评价分值
图4 感官分析评价主成分分析双重图
本文果蔬汁中挥发性风味物质的分析采用峰面积归一化法进行相对定量,峰面积归一化法可反映被测样品中各风味物质的种类及相对含量,是常用的具有代表性的分析和评价方法。Kaprasob等[14]通过峰面积归一化法对比研究不同乳酸菌发酵酪梨苹果汁中风味物质的差异。束文秀等[12]通过峰面积归一化法研究单一和混合乳酸菌发酵对胡柚汁风味物质的影响。本文通过分析不同果蔬汁发酵前后其风味物质种类及相对含量的变化,探索发酵果蔬汁风味变化的趋势走向和总体规律,进而探讨导致风味匹配差异性的原因,对理论研究和实际生产具有一定的指导意义。而对于进一步研究乳酸菌发酵果蔬汁的风味物质变化动力学,深入对比不同果蔬汁发酵后风味物质含量的差异,仍有待精准的定量分析。
植物乳杆菌在果蔬汁中的代谢并不是简单地利用糖、氨基酸进行产酸,果蔬汁发酵后芳香族氨基酸总量的增加及挥发性风味物质中相应出现和增加的苯衍生物反映了乳酸菌在果蔬汁代谢过程中,游离氨基酸与挥发性风味物质存在相互转换的关联性。总体而言,5种果蔬汁经发酵后,挥发性风味物质种类及醇酯类物质含量增加,游离氨基酸总量下降。但植物乳杆菌发酵对不同果蔬汁的风味影响差异较大,其中酯香型果汁如苹果和梨经过植物乳杆菌发酵后,由于醇类和酯类物质种类和含量增加,典型香气物质含量增加,突出了原有的果香和花香,且发酵后糖酸比适中,表现出酸甜适度的味感;葡萄汁发酵后产生大量芳香类烷烃物质增加了葡萄汁的香气;而醇香型果汁如青瓜汁经发酵后醇类物质含量增加使得醇类的酒味、刺激性气味增加;由于萜烯类物质变化使得橙汁新鲜气息降低、发酵气味增强,青瓜汁和橙汁发酵后糖酸比低,表现出过酸的味感。
[1] Di C R, Filannino P, Gobbetti M. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice[J]. International Journal of Food Microbiology, 2017, 248: 56-62.
[2] Filannino P, Azzi L, Cavoski I, et al. Exploitation of the health-promoting and sensory properties of organic pomegranate () juice through lactic acid fermentation[J]. International Journal of Food Microbiology, 2013, 163(2/3): 184-192.
[3] Smid E J, Kleerebezem M. Production of aroma compounds in lactic fermentations[J]. Annu Rev Food Sci Technol, 2014, 5(1): 313-326.
[4] Sabatini N, Marsilio V. Volatile compounds in table olives (, Nocellara del Belice cultivar)[J]. Food Chemistry, 2008, 107(4): 1522-1528.
[5] Park J, Lim S, Sim H, et al. Changes in antioxidant activities and volatile compounds of mixed berry juice through fermentation by lactic acid bacteria[J]. Food Science and Biotechnology, 2017, 26(2): 441-446.
[6] Martins E, Ramos A, Vanzela E, et al. Products of vegetable origin: A new alternative for the consumption of probiotic bacteria[J]. Food Research International, 2013, 51(2): 764-770.
[7] Espirito-Santo A, Carlin F, Cmgc R. Apple, grape or orange juice: Which one offers the best substrate for lactobacilli growth? —A screening study on bacteria viability, superoxide dismutase activity, folates production and hedonic characteristics[J]. Food Research International, 2015, 78: 352-360.
[8] Nualkaekul S, Charalampopoulos D. Survival of Lactobacillus plantarum in model solutions and fruit juices[J]. International Journal of Food Microbiology, 2011, 146(2): 111-117.
[9] Park Y, Leontowicz H, Leontowicz M, et al. Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars [J]. Journal of Food Composition and Analysis, 2011, 24(7): 963-970.
[10] Zierler B, Siegmund B, Pfannhauser W. Determination of off-flavour compounds in apple juice caused by microorganismsusing headspace solid phase microextraction-gas chromatography- mass spectrometry[J]. Analytica Chimica Acta, 2004, 520(1/ 2): 3-11.
[11] 李维妮,郭春锋,张宇翔,等. 乳酸菌发酵苹果汁香气成分的气相色谱-质谱法分析[J]. 食品科学,2017,38(4):146-154. Li Weini, Guo Chunfeng, Zhang Yuxiang, et al. GC-MS ananlysis of aroma components of apple juice fermented with lactic acid bacteria[J]. Food Science, 2017, 38(4): 146-154. (in Chinese with English abstract)
[12] 束文秀,吴祖芳,刘连亮,等. 胡柚汁益生菌发酵挥发性风味特征[J]. 食品科学,2018,39(4):59-65.Shu Wenxiu, Wu Zufang, Liu Lianliang, et al. Study on the volatile flavor compounds of huyou juice by probiotics fermentation[J]. Food Science, 2018, 39(4): 59-65. (in Chinese with English abstract)
[13] Di C, Surico R, Paradiso A, et al. Effect of autochthonous lactic acid bacteria starters on health-promoting and sensory properties of tomato juices[J]. International Journal of Food Microbiology, 2009, 128(3): 473-483.
[14] Kaprasob R, Kerdchoechuen O, Laohakunjit N, et al. Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria[J]. Process Biochemistry, 2017, 59: 141-149.
[15] 熊涛,马晓娟. 植物乳杆菌NCU166发酵胡萝卜浆风味物质的分析[J]. 食品科学,2013,34(2):152-154. Xiong Tao, Ma Xiaojuan. Analysis of flavor compounds from Lactobacillus plantarum-fermented carrot slurry[J]. Food Science, 2013, 34(2): 152-154. (in Chinese with English abstract)
[16] 孙圳,韩东,张春晖,等. 定量卤制鸡肉挥发性风味物质剖面分析[J]. 中国农业科学,2016,49(15):3030-3045. Sun Zhen, Han Dong, Zhang Chunhui, et al. Profile analysis of the volatile flavor compounds of quantitative marinated chicken during processing[J].Scientia Agricultura Sinica, 2016, 49(15): 3030-3045. (in Chinese with English abstract)
[17] Tripathi J, Chatterjee S, Gamre S, et al. Analysis of free and bound aroma compounds of pomegranate (Punica granatum L.) [J]. LWT - Food Science and Technology, 2014, 59(1): 461-466.
[18] 李春美,郝菊芳,钟慧臻,等. 怀枝荔枝中游离态和键合态风味物质的检测分析[J]. 食品科学,2010,31(24):268-271. Li Chunmei, Hao Jufang, Zhong Huizhen, et al. Free and glycosidically bound volatile flavor compounds in fruit of litchi chinensis huaizhi [J]. Food Science, 2010, 31(24): 268-271. (in Chinese with English abstract)
[19] 张建友,王芳,周垚,等. 大豆酱油电渗析脱盐工艺参数对其脱盐率及品质的影响[J]. 农业工程学报,2016,32(17):287-293. Zhang Jianyou, Wang Fang, Zhou Yao, et al. Effect of electrodialysis desalination technology parameters on ratio of desalinization and quality of soy sauce[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 287-293. (in Chinese with English abstract)
[20] Genovese A, Gambuti A, Piombino P, et al. Sensory properties and aroma compounds of sweet Fiano wine[J]. Food Chemistry, 2007, 103(4): 1228-1236.
[21] Vázquez-Araújo L, Koppel K, Chambers I E, et al. Instrumental and sensory aroma profile of pomegranate juices from the USA: Differences between fresh and commercial juice[J]. Flavour and Fragrance Journal, 2011, 26(2): 129-138.
[22] 蒋滢,徐颖,朱庚伯. 人类味觉与氨基酸味道[J]. 氨基酸和生物资源,2002,24(4):70. Jiang Ying, Xu Ying, Zhu Gengbo. Human taste and amino acid flavor[J]. Amino Acids and Biotic Resources, 2002,24(4): 70. (in Chinese with English abstract)
[23] 王齐,朱伟伟,苏丹,等. 蒲桃中氨基酸组成与含量对其营养与风味的影响[J]. 食品科学,2012,33(16):204-207. Wang Qi, Zhu Weiwei, Su Dan, et al. Effects of amino acid composition and contents on nutritional value and flavor in rose apple fruits[J]. Food Science, 2012, 33(16): 204-207. (in Chinese with English abstract)
[24] Wegkamp A, Teusink B, Vos W M D, et al. Development of a minimal growth medium for Lactobacillus plantarum[J]. Letters in Applied Microbiology, 2010, 50(1): 57-64.
[25] 管晓冉,张德纯,席青. 双歧杆菌发酵果蔬汁营养成分分析及保质期观察[J]. 中国微生态学杂志,2010,22(7):587-590. Guan Xiaoran, Zhang Dechun, Xi Qing. Nutrition analysis and shelf-life observation offermented mixed fruit and vegetable juice[J]. Chinese Journal of Microecology, 2010, 22(7): 587-590. (in Chinese with English abstract)
[26] Shah N. Functional foods from probiotics and prebiotics[J]. Food Technology, 2001, 55(11): 46-53.
[27] Melgarejo P, Calin-Sanchez A, Vazquez-Araujo L, et al. Volatile composition of pomegranates from 9 spanish cultivars using headspace solid phase microextraction[J]. Journal of Food Science, 2011, 76(1): 114-120.
Favor quality of different fruit and vegetable juices fermented by
Li Biansheng1,2, Lu Jiayi1, Ruan Zheng1
(1.510640,; 2.510640,)
Composition and concentration of volatile flavor compounds of fruit and vegetable juices have important influence on sensory properties and consumer acceptance. The effect of lactic acid bacteria metabolism on the production of bioactive compounds during growth of fruit substrate is well studied, however, the characteristics of the volatile flavor compounds of the fermented juices are less investigated. This paper aims to study the changes of flavor substances and flavor quality of orange juice, apple juice, pear juice, grape juice and cucumber juice before and after fermentation byLP-115 400B. Flavor of juices is characterized by interactions between volatile and non-volatile compounds, mainly acids, sugars, and free amino acids (FAA). Quantitative descriptive analysis (QDA) method was adopted to perform the sensory evaluation combed with the analysis of the FAA, sugars and acids. Principal component analysis (PCA) was applied to the sensory evaluation. Volatile flavor compounds were measured by gas chromatography - mass spectrometry (GC-MS) after the preparation of samples by static headspace solid-phase microextraction (HS-SPME). After fermentation, the kind of volatile flavor compounds in different juices increased, which enriched the flavor. The aldehydes were largely reduced to alcohols or oxidized to acids under microbial action. The relative content of alcohols and esters increased significantly, which was beneficial to the apple juice and pear juice, while the wine and pungent smell was increased in the fermented cucumber juice. Plenty of aromatic hydrocarbon was detected in grape juice after fermentation, which enriched the sensory flavor. Because of the changes in terpene, the fresh smell of orange juice decreased and the fermentation odor increased. Due to the metabolism of the lactic acid bacteria during fermentation, the total FAA content significantly reduced, but it still had certain influence on the flavor of fruit juices. The content of sweet amino acids, umami amino acids and bitter amino acids decreased, but the content of aromatic amino acids increased. The changes of FAA in various fruit and vegetable juices showed the correlation between FAA and volatile flavor compounds, such as the increase of the aromatic amino acids and the corresponding increase of the benzene derivatives in different juices after fermentation. The PCA of sensory evaluation showed that the fermented juices were mainly discriminated by the higher intensity of floral, fruity, fermented taste and sour (especially the apple juice and pear juice). The sweet taste of fruit juices was decreased after fermentation, which was related to the decrease of total sugar content and the decrease of sweet amino acids content. After fermentation, pear juice and apple juice showed the most comfortable sweet and sour feeling with the sugars-acids ratio of 21.00 and 17.79 respectively. These findings suggested that apple juice and pear juice may be more suitable substance for lactic acid fermentation to improve the flavor. For the other 3 kinds of juices, reducing the number of initial viable bacteria, terminating the fermentation in advance or adding flavor substances may help to optimize the flavor. In a word, lactic acid fermentation may be considered as an interesting option to enhance the flavor compounds of fruit juices and ensure a better control of flavor changes during juice processing.
bacteria; fermentation; fruit juices; the volatile flavor compounds; free amino acid; sensory evaluation
10.11975/j.issn.1002-6819.2018.19.037
TS255.44
A
1002-6819(2018)-19-0293-07
2018-04-11
2018-06-28
国家重点研发计划项目“食品绿色节能制造关键技术及装备研发(2017YFD0400400)”;中央高校基本科研业务费专项资金资助项目
李汴生,博士,教授,研究方向为食品加工与保藏。Email:febshli@scut.edu.cn
李汴生,卢嘉懿,阮 征. 植物乳杆菌发酵不同果蔬汁风味品质研究[J]. 农业工程学报,2018,34(16):293-299. doi:10.11975/j.issn.1002-6819.2018.19.037 http://www.tcsae.org
Li Biansheng, Lu Jiayi, Ruan Zheng. Favor quality of different fruit and vegetable juices fermented by[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 293-299. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.19.037 http://www.tcsae.org