组合公式的偏导数证明

2018-09-25 09:41武国宁孙娜刘建军陈小民
教育教学论坛 2018年27期
关键词:分法个球标号

武国宁 孙娜 刘建军 陈小民

摘要:本文借助于多元函数求偏导数,从分析的角度给出了组合公式的一个证明。从分析的角度来证明组合问题是一个巧妙的想法,对一些问题的求解提供了一种新颖的思路。

关键词:组合公式;偏导数

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2018)27-0193-02

一、引言

在大学数学课程如概率论,微积分和线性代数等的讲授过程中,我们常遇到以下组合计数[1][2]:nn n-n n …n-n -…-n n 。这里nn 表示:从n个不同元素里取n 个元素不同组合的个数。该组合计数可以看作将带有标号的n个球分为k组,第一组有n 个球,第二组有n 个球,…第k组有n 个球不同分法的个数。例如含有k个变量n次多项式展开式为:

x +x +…+x = nn n-n n …n-n -…-n n x x …x (1)

又如,k个函数乘积的n阶导数求法为:

f f …f = nn n-n n …n-n -…-n n

f f …f (2)

我们都熟悉以下等式:

nn n-n n …n-n -…-n n = (3)

这个等式是如何计算出来的?

常规的证明方法为排列计数法[1]。简述如下:

我们将带有标号的n个球分为k组,第一组有n 个球,第二组有n 个球,…第k组有n 个球。假设分法有x种。即设x=nn n-n n …n-n -…-n n ,对于一个给定的分组,如果考虑标号,不同的标号如果认为不同的排列,那么对于给定的一个分组,由于不同标号的排列总共有n !n !…n !个新排列。而带有标号的n个球的全排列为n!。这样我们有:

xn !n !…n !=n! (4)

所以有(3)式成立。

本文我们借助偏导数的方法来证明公式(3)。

二、证明

对公式(1)的两边求n阶混合偏导数,有

x +x +…+x

= nn n-n n …n-n -…-n n x x …x (5)

其中m ≥0,i=1,2,…k且m +m +…+m =n。

等式左边为,

x +x +…+x =n! (6)

等式的右边,除了m =n ,i=1,2,…k的那一项外,其他项的偏导数为零。所以有:

nn n-n n …n-n -…-n n x x …x

= nm n-m m …n-m -…-m m

x x …x

=nm n-m m …n-m -…-m m m !m !…m !(7)

由公式(6),(7),所以有:

nm n-m m …n-m -…-m m =

證毕。

特别地,若k=2,则:

x +x = nlx x (5)

n!=nmm!n-m! (6)

所以有:

nm= (7)

三、结论

组合公式nm n-m m …n-m -…-m m = 是我们熟悉的一个公式,常规的思路为借助于排列计数的方法来证明。本文我们借助于求偏导数来证明该公式,这是一种用分析方法证明组合公式的尝试。该方法较为新颖,为我们解决组合问题提供了一种新的思路。

四、致谢

感谢中国石油大学北京教改项目支持。

参考文献:

[1]钟开莱.初等概率论附随机过程[M].北京:人民教育出版社,1979.

[2]茆诗松.概率论基础[M].北京:高等教育出版社,1997.

猜你喜欢
分法个球标号
谁的分法好
谁的分法更好?
踢你个球
踢你个球
踢你个球
非连通图2D3,4∪G的优美标号
踢你个球(1)
多发性硬化动物模型神经功能评分的比较与改良
非连通图D3,4∪G的优美标号
非连通图(P1∨Pm)∪C4n∪P2的优美性