Kisspeptin对鱼类生殖轴的调控机制研究*

2018-08-31 06:26柳学周徐永江
渔业科学进展 2018年4期
关键词:性腺下丘脑斑马鱼

王 滨 柳学周 徐永江 史 宝 刘 权



Kisspeptin对鱼类生殖轴的调控机制研究*

王 滨1,2#柳学周1,2,①#徐永江1,2史 宝1,2刘 权1,3

(1. 农业农村部海洋渔业可持续发展重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071; 2. 青岛海洋科学与技术试点国家实验室海洋渔业科学与食物产出过程功能实验室 青岛 266071; 3. 上海海洋大学水产与生命学院 上海 201306)

Kisspeptin (简称Kiss或者Kp)是由基因编码的一种下丘脑神经肽,通过其受体KissR(也称作GPR54)的介导参与了多种生理过程,如抑制肿瘤转移和参与生殖调控。目前,尽管在鲤形目(Cypriniformes)、鲈形目(Perciforms)、鲽形目(Pleuronectiforms)、鲀形目(Tetraodontiforms)、颌针目(Beloniforms)、鲉形目(Scorpaeniformes)、鲑形目(Salmoniformes)及鳕形目(Gadiformes)等多种鱼类中均鉴定出了基因,但Kiss/KissR系统在鱼类生殖调控中的精确作用及其分子机制尚未完全阐明。尤其是在鱼类中存在2种及3种基因,Kiss/KissR系统对鱼类生殖调控的作用方式更加复杂。本文简要总结鱼类Kiss及其受体的研究进展,并对Kiss的生理学功能、信号转导机制以及表达调控研究进行概括讨论,旨在加深对鱼类Kiss/KissR系统的认识和了解,为后续研究指明方向。

鱼类;Kisspeptin;kisspeptin receptor;生殖;信号转导;基因表达调控

下丘脑神经肽kisspeptin及其受体KissR在哺乳动物生殖调控及青春期启动中发挥了重要作用(Roa, 2011; Tena-Sempere, 2010)。迄今,除鸟类外,在其他脊椎动物中均鉴定出了基因。除鸭嘴兽()外,哺乳类只存在基因;两栖类存在及三种基因;爬行类只存在基因;斑马鱼()、青鳉()、金鱼()、欧洲海鲈()、条纹鲈()及鲐鱼()中存在和两种基因。相反,在尼罗罗非鱼()、斜带石斑鱼()、塞内加尔鳎()、半滑舌鳎()以及星点东方鲀()中只鉴定出了基因(Pasquier, 2014; Um, 2010; Wang, 2017b)。目前,已在多种鱼类中鉴定出了Kiss系统,其在鱼类生殖调控中的生理功能研究也日益完善(Akazome, 2010; Mechaly, 2013; Tena- Sempere, 2012)。本文简要总结鱼类Kiss及其受体的研究进展,并对Kiss的生理学功能、信号转导机制以及表达调控研究进行概括讨论,旨在加深对鱼类Kiss/KissR系统的认识和了解,为后续研究奠定基础。

1 Kisspeptin的发现及与生殖的关系

基因最初是从人()黑色素瘤和乳腺癌细胞中分离得到的,因其具有抑制肿瘤生长和转移的功能,Kiss最初被命名为转移抑制素(Metastin) (Lee, 1996、1997)。Lee等(1999)从大鼠()脑中鉴定出了1种新型G蛋白偶联受体,命名为GPR54。2年后,Kiss被认为是孤儿受体GPR54的内源性配体(Kotani, 2001; Muir, 2001; Ohtaki, 2001)。2003年,2个独立研究组发现,突变导致人特发性性腺功能减退(de Roux, 2003; Seminara, 2003)。随后研究发现,基因敲除或者均影响性腺发育及生殖功能(d¢Anglemont de Tassigny, 2007; Seminara, 2003),说明Kiss/GPR54系统在哺乳类生殖调控中发挥了关键作用。

近几年,kisspeptin在鱼类生殖调控中的作用也有较多研究。如Kiss1直接促进了金鱼垂体细胞黄体生成素(Luteinizing hormone, LH)分泌(Chang, 2012; Yang, 2010)。Kiss2也促进了欧洲海鲈(Espigares, 2015b)和条纹鲈(Zmora, 2015)垂体细胞LH及卵泡刺激素(Follicle-stimulating hormone, FSH)分泌。此外,Kiss1增加了金鱼垂体细胞的表达水平(Yang, 2010)。然而,Kiss1特异性地降低了欧洲鳗鲡垂体细胞的表达水平 (Pasquier, 2011)。腹腔注射Kiss2促进了斑马鱼垂体及的表达水平(Kitahashi, 2009),而Kiss2特异性地促进了斜带石斑鱼垂体的表达量,对的表达水平无影响(Shi, 2010)。综上所述,kisspeptin参与了鱼类生殖调控,但具体作用机制因物种而异。

2 鱼类kiss基因类型、结构及时空表达特性

由于基因不是很保守,直到2008年才在非哺乳类中鉴定出了其同源基因。van Aerle等(2008)利用全基因组序列及比较共线性方法,首次在斑马鱼和青鳉等5种鱼类中鉴定出了基因。随后,Biran等(2008)和Kanda等(2008)也通过类似方法,分别在斑马鱼和青鳉中获得了基因。2009年,基因首次在斑马鱼、青鳉和欧洲海鲈中被鉴定出来(Felip, 2009; Kitahashi, 2009)。斑马鱼基因编码116个氨基酸的前体多肽,其C末端核心十肽为YNLNSFGLRY (Y-Y形式) (Biran, 2008; van Aerle, 2008);斑马鱼基因编码125个氨基酸的前体多肽,其C末端核心十肽为FNYNPFGLRF (F-F形式) (Kitahashi, 2009)。与之类似,其他鱼类C末端十肽序列与斑马鱼高度保守,该十肽也是发挥其功能所需的最短序列(Akazome, 2010; Pasquier, 2014)。在哺乳类中,基因由3个外显子和2个内含子组成,其中,外显子1只编码一部分5¢UTR,外显子2编码另一部分5¢UTR及一部分CDS,剩余另一部分CDS及3¢UTR由外显子3编码(Pasquier, 2014)。同样,斑马鱼基因也是由3个外显子和2个内含子组成,而基因由2个外显子和1个内含子组成(Kitahashi, 2009)。塞内加尔鳎基因也是由2个外显子和1个内含子组成,但是,其存在2种剪接变异体:较短亚型编码正常Kiss2前体多肽;较长亚型编码一种缩短形式的无功能多肽(Mechaly, 2011)。

鱼类及的组织分布因物种而异,即使同一物种不同脑区表达也有所差异。斑马鱼主要在间脑和中脑中表达,其次为后脑,在端脑和垂体中表达量较低(Biran, 2008);在外周组织中,斑马鱼在胰腺和前肠中表达量较高,其次为性腺(Biran, 2008)。与之类似,青鳉(Felip, 2009; Kitahashi, 2009)、欧洲海鲈(Felip, 2009)、金鱼(Li, 2009; Yang, 2010)、鲐鱼(Shahjahan, 2010)等脑和性腺中表达量也较高。也主要在脑和性腺中高表达,如斑马鱼(Kitahashi, 2009)、青鳉(Kitahashi, 2009)、金鱼(Li, 2009)、欧洲海鲈(Felip, 2009)、塞内加尔鳎(Mechaly, 2011)及南亚黑鲮() (Saha, 2016)等。此外,也在肠、肾脏、心脏等其他外周组织有所表达,具体表达模式具有物种特异性。

鱼类基因在不同发育阶段/生殖周期的表达模式也在斑马鱼等几种鱼类中有所报道。雌性斑马鱼脑表达量在孵化后逐渐升高,84 d时达到峰值;而雄性斑马鱼脑表达量在孵化后6周达到峰值,12周时有所下降(Biran, 2008)。此外,斑马鱼表达量在孵化后30 d达到峰值(Kitahashi, 2009)。上述结果显示,可能参与了斑马鱼青春期启动。鲐鱼脑在不同生殖周期的表达模式具有性别二态性,雄性脑表达量随精巢发育逐渐降低,而雌性脑表达量在卵巢发育过程中保持不变;除了分别在卵黄生成早期和精子生成晚期略微增加外,雌雄脑表达量随性腺发育逐渐降低,均在产卵/排精后达到最小值(Selvaraj, 2010)。然而,精巢表达水平随性腺发育逐渐升高,在精子成熟时期达到峰值;卵巢表达水平也随性腺发育逐渐升高,在卵黄生成后期达到峰值(Selvaraj, 2010)。以上结果表明,可能参与了鲐鱼季节性性腺发育。其他鱼类表达水平也随性腺发育而发生波动(Alvarado, 2013; Migaud, 2012; Park, 2016; Saha, 2016; Shahi, 2017)。

3 鱼类kissr基因类型、结构及时空表达特性

通常,哺乳类下丘脑的表达水平在青春期显著性增加(Dungan, 2006)。鱼类的表达模式也与生殖周期有关。鲻鱼脑的表达水平随性腺发育而降低,在青春期前期表达量最高(Nocillado, 2007)。与之类似,军曹鱼、黑头呆鱼及大西洋庸鲽脑的表达量也均在青春期达到峰值(Filby, 2008; Mechaly, 2010; Mohamed, 2007)。斑马鱼脑的表达量在孵化后8周时显著性增加,随后回到本底水平;而的表达量在孵化后6周时显著增加,随后一直保持到12周(Biran, 2008)。鲐鱼脑在不同生殖周期的表达模式具有性别二态性,雄鱼脑及的表达水平不随精巢发育过程而变化;而雌鱼脑及的表达水平均在卵黄生成早期显著增加并达到峰值,继而随卵巢发育过程又回到本底水平(Ohga, 2013)。精巢表达水平随性腺发育逐渐升高,在精子成熟时期达到峰值;而精巢表达水平不随性腺发育过程而变化(Ohga, 2013)。综上所述,可能参与了鱼类青春期启动及季节性性腺发育。

4 Kisspeptin对鱼类生殖调控作用研究

4.1 Kisspeptin对下丘脑促性腺激素释放激素(Gonadotropin-releasing hormone, GnRH)神经元活性以及表达调控的影响

GnRH是垂体促性腺激素合成与分泌的主要促进因子,在每种硬骨鱼类中存在至少2种GnRH多肽(Zohar, 2010; 王滨等, 2017)。Parhar等(2004)首次在罗非鱼中鉴定出了基因,并进一步证实在GnRH1、GnRH2及GnRH3神经元中表达,这表明Kiss2能够直接作用于GnRH神经元,进而影响其活性及表达调控。在青鳉中,通过电生理学研究表明,Kiss1能够促进GnRH3神经元的电活动(Electrical activity),而河豚毒素或者阻断突触传递均降低了Kiss1诱导的GnRH3神经元的电活动,这表明Kiss1以间接方式通过突触调控进而激活GnRH3神经元的电活动(Zhao, 2012)。

4.2 Kisspeptin对垂体激素合成与分泌的影响

由于鱼类中存在2种Kiss多肽,Kiss对鱼类垂体激素分泌的影响更加复杂。肌肉注射Kiss1和Kiss2均提高了青春期前的欧洲海鲈血清LH水平(Felip, 2009);腹腔注射Kiss1而非Kiss2也提高了性成熟雌性金鱼血清LH水平 (Li, 2009)。但Kiss1和Kiss2均不影响金鱼垂体细胞LH分泌(Li, 2009)。相反,另有研究表明,Kiss1直接促进了金鱼垂体细胞LH分泌(Chang, 2012; Yang, 2010)。最近研究报道,Kiss2而非Kiss1促进了欧洲海鲈(Espigares, 2015b)和条纹鲈(Zmora, 2015)垂体细胞LH分泌。Kiss1和Kiss2对杂交条纹鲈LH分泌的调控作用与生殖周期相关。在青春前期,肌肉注射Kiss2而非Kiss1增加了血清中LH水平;在性腺复苏期,Kiss1和Kiss2均增加了血清中LH水平(Zmora, 2012)。关于FSH分泌调控,肌肉注射Kiss2提高了青春期前的欧洲海鲈血清FSH水平,但是,Kiss1无影响(Felip, 2009)。同样,Kiss2而非Kiss1促进了欧洲海鲈垂体细胞FSH分泌(Espigares, 2015b)。此外,Kiss1和Kiss2均促进了条纹鲈垂体细胞FSH分泌(Zmora, 2015)。而长期埋植Kiss2显著性地降低了条纹鲈血清FSH水平(Zmora, 2014)。在鱼类中,关于Kiss对GH分泌的影响仅见于金鱼,Kiss1促进了金鱼垂体细胞GH分泌(Chang, 2012; Yang, 2010)。综上所述,Kiss对垂体激素分泌的调控作用因物种、生殖周期和注射途径而异,甚至在同一物种的不同生殖周期Kiss1和Kiss2可能发挥了不同的作用。

4.3 Kisspeptin对性腺发育及类固醇激素分泌的影响

5 鱼类kisspeptin的信号转导机制

在哺乳类中,Kiss能够激活多种细胞内信号通路,例如PLC/IP3/PKC、MAPK以及Ca2+通路等(Castano, 2009; Pasquier, 2014),而非哺乳类中有关Kiss信号转导机制的研究相对较少。在两栖类中,Moon等(2009)通过CRE-luc(对应AC/PKA通路)和SRE-luc(对应PLC/PKC通路)报告系统表明,Kiss能够激活转染了牛蛙() Kiss2R的非洲绿猴肾纤维细胞系(CV-1 cells)中SRE-luc的活性,但对CRE-luc活性无影响。此外,PKC抑制剂GF109203X预处理CV-1细胞系显著性地降低了Kiss诱导的SRE-luc的活性,而Rho激酶抑制剂Y-27632预处理CV-1细胞系部分阻断了Kiss诱导的SRE-luc的活性,上述结果显示,牛蛙Kiss2R可能主要与PKC通路偶联,部分与Rho激酶通路偶联(Moon, 2009)。同样,非洲爪蟾() 3种KissR也都与PKC通路偶联(Lee, 2009)。

6 鱼类kiss/kissr系统的表达调控研究

6.1 性类固醇激素及甲状腺激素对kiss/kissr系统的调控作用

Kiss/KissR系统也介导了睾酮(Testosterone, T)对生殖轴的反馈调控。一方面,用睾酮处理卵巢切除后的雌性条纹鲈,降低了其脑中、及的表达水平(Klenke, 2011)。另一方面,用睾酮处理精巢切除后的雄性欧洲海鲈,降低了其下丘脑中的表达水平,却不影响、及的表达水平(Alvarado, 2016)。然而,睾酮促进了雄性欧洲海鲈垂体细胞及的表达水平,对的表达水平无影响(Espigares, 2015b)。此外,睾酮也不影响半滑舌鳎下丘脑中及的表达水平(Wang, 2017b)。目前,关于甲状腺激素(Thyroid hormone)对鱼类系统的调控作用仅见于罗非鱼。腹腔注射甲状腺激素,显著地增加了罗非鱼脑的表达水平,但由于甲状腺激素受体不在Kiss2神经元中表达,这表明甲状腺激素是以间接的方式影响的表达(Ogawa, 2013)。综上所述,性类固醇激素及甲状腺激素通过影响系统的表达水平进而影响鱼类生殖调控。

6.2 Kisspeptin等神经肽对kiss/kissr系统的调控作用

促性腺激素抑制激素(Gonadotropin-inhibitory hormone, GnIH)是迄今为止在脊椎动物中鉴定出的唯一具有抑制生殖功能的下丘脑神经肽,通过其受体GnIHR (之前被称作GPR147)介导作用于脑-垂体-性腺轴进而影响动物生殖调控(Tsutsui, 2010; Ubuka, 2016; Wang, 2018)。目前,从鱼类到哺乳类都鉴定出了的同源基因,并且每种鱼类基因编码有2种或者3种成熟多肽,即GnIH-1、GnIH-2及GnIH-3 (Ogawa, 2014; Tsutsui, 2010; Ubuka, 2016; 王滨等, 2016)。GnIH对的表达调控也有少数报道。在半滑舌鳎中,GnIH-1和GnIH-2均不影响下丘脑中的表达水平(刘权等, 2017)。腹腔注射斜带石斑鱼3种GnIH多肽也不影响其下丘脑的表达水平(Wang, 2015)。此外,哺乳类GnIH同源多肽RFRP3也不影响大鼠表达水平(Johnson, 2008)。尽管侧脑室注射欧洲海鲈GnIH-1不影响其脑、及的表达水平,但是,GnIH-2均降低了及的表达水平,这说明在欧洲海鲈中,GnIH-2主要发挥了生殖调控的抑制作用(Paullada-Salmeron, 2016)。

6.3 光照对kiss/kissr系统的调控作用

光照是影响鱼类及其他脊椎动物生殖调控的一个重要环境因子,其作用主要由松果体夜间分泌的褪黑激素介导(Kitahashi, 2013)。目前,关于光照对鱼类系统的表达调控研究相对较少且存在争议。如持续性光照降低了罗非鱼脑的表达水平,表明光照能够以直接或者间接的方式影响的表达(Martinez-Chavez, 2008)。同样,持续性光照导致欧洲海鲈前中脑及的表达量不再随季节变化而变化(Espigares, 2017)。长光照(繁殖状态)条件下,青鳉下丘脑核腹侧结节中Kiss1神经元的数量显著性高于短光照(非繁殖状态) (Kanda, 2008)。而在模拟自然光照(促进生殖)条件和持续性光照(抑制生殖)条件下,大西洋鳕()脑及的表达量无显著性差异,这说明光照不影响大西洋鳕基因表达(Cowan, 2012)。特别是褪黑激素促进了斑马鱼脑及的表达水平(Carnevali, 2011),却抑制了欧洲海鲈脑及的表达水平(Alvarado, 2015)。综上所示,Kiss/KissR系统可能介导了光照(及褪黑激素)对鱼类生殖调控过程,然而具体作用机制因物种而异,需要进一步深入研究。

6.4 温度对kiss/kissr系统的调控作用

对变温动物而言,温度是影响其生殖调控的一个重要环境因子。水温升高或者降低均能抑制鱼类生殖,但其分子机制仍不清楚。Kiss作为鱼类生殖调控的一个重要因子,温度对基因的表达调控作用也有了初步研究。斑马鱼最适繁殖温度为26℃~ 28℃,低于20℃或者高于30℃均能降低其繁殖能力(Shahjahan, 2013)。将斑马鱼置于低温(15℃)、正常温度(27℃)和高温(35℃) 7 d后研究发现,低温组斑马鱼全脑的表达量显著性增加,高温组的表达量与正常组相比无显著性差异;而低温组和高温组斑马鱼全脑的表达量较正常组均显著性降低(Shahjahan, 2013)。此外,低温也增加了斑马鱼松果体等部分脑区的表达量,然而,低温和高温均降低了斑马鱼下丘脑等部分脑区的表达量(Shahjahan, 2013)。上述结果表明,温度调控斑马鱼及表达的作用机制是不同的,低温激活了系统,而低温和高温均抑制了系统,说明和系统可能参与了斑马鱼不同的生理功能(Shahjahan, 2013)。

同样,将星点东方鲀置于低温(14℃)、正常温度(21℃)和高温(28℃) 7 d后研究发现,低温组和高温组性腺指数GSI显著性降低;低温组和高温组脑/表达量也显著性降低;与此同时,低温和高温组均抑制了脑、垂体及的表达水平(Shahjahan, 2016)。上述结果表明,低温和高温组通过抑制系统,进而阻断星点东方鲀生殖。银汉鱼()的性别决定、分化与温度紧密相关,低温(17℃~19℃)导致100%全雌,高温(29℃)导致100%全雄,而24℃~25°℃导致雌雄比例各半(Tovar Bohorquez, 2017)。在高温条件下,银汉仔鱼整个脑部的表达量在孵化后4周显著性增加;而在低温条件下,脑部的表达量在孵化后8周内保持不变,这表明Kiss2可能在雄性发育过程中性别决定阶段发挥了重要作用(Tovar Bohorquez, 2017)。

6.5 饥饿对kiss/kissr系统的调控作用

营养状况也会影响动物生殖活动。目前,关于Kiss介导的能量平衡与生殖之间关系的研究较少。在哺乳类中,饥饿导致小鼠()下丘脑及表达量降低(Luque, 2007)。同样,饥饿也降低了大鼠下丘脑的表达量,却增加了的表达量(Castellano, 2005)。在鱼类中,饥饿15 d导致塞内加尔鳎体重减少,却增加了下丘脑及的表达水平,但对胃中及的表达水平无影响(Mechaly, 2011)。同样,饥饿也增加了欧洲海鲈下丘脑、、及的表达水平(Escobar, 2016)。综上所述,饥饿对哺乳类和鱼类系统的不同调控作用表明,该系统可能在哺乳类和鱼类能量平衡过程中起着相反的作用。此外,Kiss/KissR系统是否参与了鱼类摄食调控仍不得而知,需要进一步深入研究。

7 小结

Kiss是一种多功能的神经肽,它在下丘脑-垂体-性腺轴多个水平参与了哺乳动物生殖调控。目前,尽管已在多种鱼类中鉴定出了Kiss/KissR系统,但其在鱼类生殖调控中的精确作用需要进一步研究;Kiss调控垂体激素分泌及其基因表达的信号转导机制网络需要进一步完善;Kiss是否参与鱼类摄食调控及其作用机制尚未阐明;Kiss与其他因子(例如GnIH、GnRH等)之间如何互作,在生殖轴各个水平将多种信号整合进而调控生殖等生理过程仍不清楚,只有阐明上述机制才能更好地了解Kiss参与鱼类生殖、生长及代谢的协调过程。该综述总结了鱼类Kiss及其受体的研究进展,并对Kiss的生理学功能、信号转导机制以及表达调控研究进行概括讨论,增加了人们对Kiss/KissR系统参与鱼类生殖调控机制的认识,为后续研究提供参考。

Akazome Y, Kanda S, Okubo K,Functional and evolutionary insights into vertebrate kisspeptin systems from studies of fish brain. Journal of Fish Biology, 2010, 76(1): 161–182

Alvarado MV, Carrillo M, Felip A. Expression of kisspeptins and their receptors, gnrh-1/gnrhr-II-1a and gonadotropin genes in the brain of adult male and female European sea bass during different gonadal stages. General and Comparative Endocrinology, 2013, 187: 104–116

Alvarado MV, Carrillo M, Felip A. Melatonin-induced changes in kiss/gnrh gene expression patterns in the brain of male sea bass during spermatogenesis. Comparative Biochemistry and Physiology. Part A:Molecular and Integrative Physiology, 2015, 185: 69–79

Alvarado MV, Servili A, Moles G,Actions of sex steroids on kisspeptin expression and other reproduction-related genes in the brain of the teleost fish European sea bass. Journal of Experimental Biology, 2016, 219: 3353–3365

Beck BH, Fuller SA, Peatman E,Chronic exogenous kisspeptin administration accelerates gonadal development in basses of the genus Morone. Comparative Biochemistry and Physiology Part A:Molecular and Integrative Physiology, 2012, 162(3): 265–273

Biran J, Ben-Dor S, Levavi-Sivan B. Molecular identification and functional characterization of the kisspeptin/kisspeptin receptor system in lower vertebrates. Biology of Reproduction, 2008, 79(4): 776–786

Carnevali O, Gioacchini F, Maradonna F,Melatonin induces follicle maturation in. PLoS One, 2011, 6: e19978

Castano JP, Martinez-Fuentes AJ, Gutierrez-Pascual E,Intracellular signaling pathways activated by kisspeptins through GPR54: Do multiple signals underlie function diversity? Peptides, 2009, 30(1): 10–15

Castellano JM, Navarro VM, Fernández-Fernández R,Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology, 2005, 146(9): 3917–3925

Chang JP, Mar A, Wlasichuk M,Kisspeptin-1 directly stimulates LH and GH secretion from goldfish pituitary cells in a Ca(2+)-dependent manner. General and Comparative Endocrinology, 2012, 179(1): 38–46

Cowan M, Davie A, Migaud H. Photoperiod effects on the expression of kisspeptin and gonadotropin genes in Atlantic cod,, during first maturation. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2012, 163(1): 82–94

d'Anglemont de Tassigny X, Fagg LA, Dixon JP,Hypogonadotropic hypogonadism in mice lacking a functionalgene. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25): 10714–10719

de Roux N, Genin E, Carel JC,Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10972–10976

Dungan HM, Clifton DK, Steiner RA. Minireview:Kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology, 2006, 147(3): 1154–1158

Elizur A, Nocillado J, Biran J,Advancement of the onset of puberty inby chronic treatment with kiss peptides. Indian Journal Science Technology, 2011, 4: 274– 275

Escobar S, Felip A, Zanuy S,Is the kisspeptin system involved in responses to food restriction in order to preserve reproduction in pubertal male sea bass (). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2016, 199: 38–46

Espigares F, Carrillo M, Gomez A,The forebrain-midbrain acts as functional endocrine signaling pathway of Kiss2/Gnrh1 system controlling the gonadotroph activity in the teleost fish European sea bass (). Biology of Reproduction, 2015a, 92(3): 70

Espigares F, Rocha A, Gomez A,Photoperiod modulates the reproductive axis of european sea bass through regulation of kiss1 and gnrh2 neuronal expression. General and Comparative Endocrinology, 2017, 240: 35–45

Espigares F, Zanuy S, Gomez A. Kiss2 as a regulator of Lh and Fsh secretion via Paracrine/Autocrine signaling in the teleost fish European Sea Bass (). Biology of Reproduction, 2015b, 93(5): 114

Fairgrieve MR, Shibata Y, Smith EK,Molecular characterization of the gonadal kisspeptin system: Cloning, tissue distribution, gene expression analysis and localization in sablefish (). General and Comparative Endocrinology, 2016, 225: 212–223

Felip A, Espigares F, Zanuy S,Differential activation of kiss receptors by Kiss1 and Kiss2 peptides in the sea bass. Reproduction, 2015, 150(3): 227–243

Felip A, Zanuy S, Pineda REvidence for two distinct KiSS genes in non-placental vertebrates that encode kisspeptins with different gonadotropin-releasing activities in fish and mammals. Molecular and Cellular Endocrinology, 2009, 312(1–2): 61–71

Filby AL, van Aerle R, Duitman J,The kisspeptin/ gonadotropin-releasing hormone pathway and molecular signaling of puberty in fish. Biology of Reproduction, 2008, 78(2): 278–289

Imamura S, Hur SP, Takeuchi Y,Molecular cloning of kisspeptin receptor genes (gpr54-1 and gpr54-2) and their expression profiles in the brain of a tropical damselfish during different gonadal stages. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2016, 203: 9–16

Johnson MA, Fraley GS. Rat RFRP-3 alters hypothalamic GHRH expression and growth hormone secretion but does not affect KiSS-1 gene expression or the onset of puberty in male rats. Neuroendocrinology, 2008, 88(4): 305–315

Kanda S, Akazome Y, Matsunaga T,Identification of KiSS-1 product kisspeptin and steroid-sensitive sexually dimorphic kisspeptin neurons in medaka (O). Endocrinology, 2008, 149(5): 2467–2476

Kanda S, Karigo T, Oka Y. Steroid sensitive kiss2 neurones in the goldfish: evolutionary insights into the duplicate kisspeptin gene-expressing neurones. Journal of Neuroendocrinology, 2012, 24(6): 897–906

Kim NN, Choi YU, Park HS,Kisspeptin regulates the somatic growth-related factors of the cinnamon clownfish. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2015, 179: 17–24

Kitahashi T, Ogawa S, Parhar IS. Cloning and expression of kiss2 in the zebrafish and medaka. Endocrinology, 2009, 150(2): 821–831

Kitahashi T, Parhar IS. Comparative aspects of kisspeptin gene regulation. General and Comparative Endocrinology, 2013, 181(1): 197–202

Klenke U, Zmora N, Stubblefield J,Expression patterns of the kisspeptin system and GnRH1 correlate in their response to gonadal feedback in female striped bass. Indian Journal of Science Technology, 2011, 4(S8): 33–34

Kotani M, Detheux M, Vandenbogaerde A,The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. Journal of Biological Chemistry, 2001, 276(37): 34631– 34636

Lee DK, Nguyen T, O'Neill GP,Discovery of a receptor related to the galanin receptors. FEBS Letters, 1999, 446(1): 103–107

Lee JH, Miele ME, Hicks DJ,KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. Journal of the National Cancer Institute, 1996, 88(23): 1731–1737

Lee JH, Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Research, 1997, 57(12): 2384–2387

Lee YR, Tsunekawa K, Moon MJ,Molecular evolution of multiple forms of kisspeptins and GPR54 receptors in vertebrates. Endocrinology, 2009, 150(6): 2837–2846

Li S, Zhang Y, Liu Y,Structural and functional multiplicity of the kisspeptin/GPR54 system in goldfish (). Journal of Endocrinology, 2009, 201(3): 407–418

Liu Q, Wang B, Liu XZ,. Effects of gonadotropin-inhibitory hormone peptides on the reproduction-related gene expression in the hypothalamus of half-smooth tongue sole (). Progress in Fishery Sciences, 2017, 38(1): 56–62 [刘权, 王滨, 柳学周, 等GnIH 多肽对半滑舌鳎()下丘脑生殖相关基因表达的影响. 渔业科学进展, 2017, 38(1): 56–62]

Luque RM, Kineman RD, Tena-Sempere M. Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: Analyses using mouse models and a cell line. Endocrinology, 2007, 148(10): 4601–4611

Martinez-Chavez CC, Minghetti M, Migaud H. GPR54 and rGnRH I gene expression during the onset of puberty in. General and Comparative Endocrinology, 2008, 156(2): 224–233

Mechaly AS, Vinas J, Murphy CGene structure of the Kiss1 receptor-2 (Kiss1r-2) in the Atlantic halibut: Insights into the evolution and regulation of Kiss1r genes. Molecular and Cellular Endocrinology, 2010, 317(1–2): 78–89

Mechaly AS, Vinas J, Piferrer F. Gene structure analysis of kisspeptin-2 (Kiss2) in the Senegalese sole (): Characterization of two splice variants of Kiss2, and novel evidence for metabolic regulation of kisspeptin signaling in non-mammalian species. Molecular and Cellular Endocrinology, 2011, 339(1–2): 14–24

Mechaly AS, Vinas J, Piferrer F. Identification of two isoforms of the Kisspeptin-1 receptor (kiss1r) generated by alternative splicing in a modern teleost, the Senegalese sole (). Biology of Reproduction, 2009, 80(1): 60–69

Mechaly AS, Vinas J, Piferrer F. The kisspeptin system genes in teleost fish, their structure and regulation, with particular attention to the situation in Pleuronectiformes. General and Comparative Endocrinology, 2013, 188(1): 258–268

Migaud H, Ismail R, Cowan M,Kisspeptin and seasonal control of reproduction in male European sea bass (). General and Comparative Endocrinology, 2012, 179(3): 384–399

Mitani Y, Kanda S, Akazome Y,Hypothalamic Kiss1 but not Kiss2 neurons are involved in estrogen feedback in medaka (). Endocrinology, 2010, 151(4): 1751–1759

Mohamed JS, Benninghoff AD, Holt GJ,Developmental expression of the G protein-coupled receptor 54 and three GnRH mRNAs in the teleost fish cobia. Journal of Molecular Endocrinology, 2007, 38(1–2): 235–244

Moon JS, Lee YR, Oh DY,Molecular cloning of the bullfrog kisspeptin receptor GPR54 with high sensitivity to Xenopus kisspeptin. Peptides, 2009, 30(1): 171–179

Muir AI, Chamberlain L, Elshourbagy NA,AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. Journal of Biological Chemistry, 2001, 276(31): 28969–28975

Nocillado JN, Biran J, Lee YY,The Kiss2 receptor (Kiss2r) gene in Southern Bluefin Tuna,and in Yellowtail Kingfish,-functional analysis and isolation of transcript variants. Molecular and Cellular Endocrinology, 2012, 362(1–2): 211–220

Nocillado JN, Levavi-Sivan B, Carrick F,Temporal expression of G-protein-coupled receptor 54 (GPR54), gonadotropin-releasing hormones (GnRH), and dopamine receptor D2 (drd2) in pubertal female grey mullet,. General and Comparative Endocrinology, 2007, 150(2): 278–287

Nocillado JN, Zohar Y, Biran J,Chronic kisspeptin administration stimulated gonadal development in pre-pubertal male yellowtail kingfish (; Perciformes) during the breeding and non-breeding season. General and Comparative Endocrinology, 2013, 191(9): 168–176

Ogawa S, Ng KW, Ramadasan PN,Habenular Kiss1 neurons modulate the serotonergic system in the brain of zebrafish. Endocrinology, 2012, 153(5): 2398–2407

Ogawa S, Ng KW, Xue X,Thyroid hormone upregulates hypothalamic kiss2 Gene in the male Nile tilapia,. Front Endocrinol (Lausanne), 2013, 4: 184

Ogawa S, Parhar IS. Structural and functional divergence of gonadotropin-inhibitory hormone from jawless fish to mammals. Front Endocrinol (Lausanne), 2014, 5 (5): 177

Ohga H, Fujinaga Y, Selvaraj S,Identification, characterization, and expression profiles of two subtypes of kisspeptin receptors in a scombroid fish (Chub mackerel). General and Comparative Endocrinology, 2013, 193: 130–140

Ohga H, Selvaraj S, Adachi H,Functional analysis of kisspeptin peptides in adult immature chub mackerel () using an intracerebroventricular administration method. Neuroscience Letters, 2014, 561: 203–207

Ohtaki T, Shintani Y, Honda S,Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 2001, 411(6837): 613–617

Onuma TA, Duan C. Duplicated Kiss1 receptor genes in zebrafish: Distinct gene expression patterns, different ligand selectivity, and a novel nuclear isoform with transactivating activity. FASEB Journal, 2012, 26(7): 2941–2950

Parhar I S, Ogawa S, Sakuma Y. Laser-captured single digoxigenin- labeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish. Endocrinology, 2004, 145(8): 3613–3618

Park JW, Jin YH, Oh SY,Kisspeptin2 stimulates the HPG axis in immature Nile tilapia (). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2016, 202: 31–38

Pasquier J, Kamech N, Lafont AG,Molecular evolution of GPCRs: Kisspeptin/kisspeptin receptors. Journal of Molecular Endocrinology, 2014, 52(3): 101–117

Pasquier J, Lafont AG, Jeng SR,Multiple kisspeptin receptors in early osteichthyans provide new insights into the evolution of this receptor family. PLoS One, 2012, 7(11): e48931

Pasquier J, Lafont AG, Leprince J,First evidence for a direct inhibitory effect of kisspeptins on LH expression in the eel,. General and Comparative Endocrinology, 2011, 173(1): 216–225

Paullada-Salmeron JA, Cowan M, Aliaga-Guerrero MGonadotropin inhibitory hormone down-regulates thebrain- Pituitary reproductive axis of male European Sea Bass (). Biology of Reproduction, 2016, 94(6): 121

Roa J, Navarro VM, Tena-Sempere M. Kisspeptins in reproductive biology: Consensus knowledge and recent developments. Biology of Reproduction, 2011, 85(4): 650–660

Saha A, Pradhan A, Sengupta S,Molecular characterization of two kiss genes and their expression in rohu () during annual reproductive cycle. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2016, 191: 135–145

Selvaraj S, Kitano H, Fujinaga Y,Molecular characterization, tissue distribution, and mRNA expression profiles of two Kiss genes in the adult male and female chub mackerel () during different gonadal stages. General and Comparative Endocrinology, 2010, 169(1): 28–38

Selvaraj S, Ohga H, Kitano H,Peripheral administration of Kiss1 pentadecapeptide induces gonadal development in sexually immature adult scombroid fish. Zoology Science, 2013a, 30(6): 446–454

Selvaraj S, Ohga H, Nyuji M,Subcutaneous administration of Kiss1 pentadecapeptide accelerates spermatogenesis in prepubertal male chub mackerel (). Comparative Biochemistry and Physiology Part A:Molecular and Integrative Physiology, 2013b, 166(2): 228–236

Seminara SB, Messager S, Chatzidaki EE,The GPR54 gene as a regulator of puberty. New England Journal of Medicine, 2003, 349(17): 1614–1627

Servili A, Le Page Y, Leprince J,Organization of two independent kisspeptin systems derived from evolutionary- ancient kiss genes in the brain of zebrafish. Endocrinology, 2011, 152(4): 1527–1540

Shahi N, Singh AK, Sahoo M,Molecular cloning, characterization and expression profile of kisspeptin1 and kisspeptin1 receptor at brain-pituitary-gonad (BPG) axis of golden mahseer,(Hamilton, 1822) during gonadal development. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2017, 205: 13–29

Shahjahan M, Kitahashi T, Ando H. Temperature affects sexual maturation through the control of kisspeptin, kisspeptin receptor, GnRH and GTH subunit gene expression in the grass puffer during the spawning season. General and Comparative Endocrinology, 2016, 243: 138–145

Shahjahan M, Kitahashi T, Ogawa S,Temperature differentially regulates the two kisspeptin systems in the brain of zebrafish. General and Comparative Endocrinology, 2013, 193(4): 79–85

Shahjahan M, Motohashi E, Doi H,Elevation of Kiss2 and its receptor gene expression in the brain and pituitary of grass puffer during the spawning season. General and Comparative Endocrinology, 2010, 169(1): 48–57

Shi Y, Zhang Y, Li S,Molecular identification of the Kiss2/Kiss1ra system and its potential function during 17alpha-methyltestosterone-induced sex reversal in the orange-spotted grouper,. Biology of Reproduction, 2010, 83(1): 63–74

Tang H, Liu Y, Luo D,The kiss/kissr systems are dispensable for zebrafish reproduction:Evidence from gene knockout studies. Endocrinology, 2015, 156(2): 589–599

Tena-Sempere M. Roles of kisspeptins in the control of hypothalamic-gonadotropic function: Focus on sexual differentiation and puberty onset. Endocrine Development, 2010, 17: 52–62

Tena-Sempere M, Felip A, Gomez A,Comparative insights of the kisspeptin/kisspeptin receptor system:Lessons from non-mammalian vertebrates. General and Comparative Endocrinology, 2012, 175(2): 234–243

Tovar Bohorquez MO, Mechaly AS, Hughes LC,Kisspeptin system in pejerrey fish (). Characterization and gene expression pattern during early developmental stages. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2017, 204: 146–156

Tsutsui K, Bentley GE, Kriegsfeld LJ,Discovery and evolutionary history of gonadotrophin-inhibitory hormone and kisspeptin: new key neuropeptides controlling reproduction. Journal of Neuroendocrinology, 2010, 22(7): 716–727

Ubuka T, Son YL, Tsutsui K. Molecular, cellular, morphological, physiological and behavioral aspects of gonadotropin- inhibitory hormone. General and Comparative Endocrinology, 2016, 227: 27–50

Um HN, Han JM, Hwang JI,Molecular coevolution of kisspeptins and their receptors from fish to mammals. Annals of the New York Academy of Sciences, 2010, 1200(1): 67–74

van Aerle R, Kille P, Lange A,Evidence for the existence of a functional Kiss1/Kiss1 receptor pathway in fish. Peptides, 2008, 29(1): 57–64

Wang B, Liu Q, Liu XZ,Molecular characterization of Kiss2 receptor andeffects of Kiss2 on reproduction- related gene expression in the hypothalamus of half-smooth tongue sole (). General and Comparative Endocrinology, 2017a, 249, 55–63

Wang B, Liu Q, Liu XZ,Molecular characterization and expression profiles of LPXRFa at the brain-pituitary-gonad axis of half-smooth tongue sole () during ovarian maturation. Comparative Biochemistry and Physiology. Part B: Biochemistry and Molecular Biology, 2018, 216, 59–68

Wang B, Liu Q, Liu XZ,Molecular characterization ofand differential regulation of reproduction-related genes by sex steroids in the hypothalamus of half-smooth tongue sole (). Comparative Biochemistry and Physiology. Part A: Molecular and Integrative Physiology, 2017b, 213, 46–55

Wang B, Liu XZ, Liu Q,. Molecular cloning, localization, and expression analysis ofin different tissues of half-smooth tongue sole () during ovarian maturation. Progress in Fishery Sciences, 2017, 38(1): 63–72 [王滨, 柳学周, 刘权等半滑舌鳎()基因克隆、组织分布及卵巢成熟过程中表达分析. 渔业科学进展, 2017, 38(1): 63–72]

Wang, B, Yang, G, Liu, Q,. Inhibitory action of tongue sole LPXRFa, the piscine ortholog of gonadotropin-inhibitory hormone, on the signaling pathway induced by tongue sole kisspeptin in COS-7 cells transfected with their cognate receptors. Peptides, 2017c, 95, 62–67

Wang B, Liu XZ, Xu YJ,. Progress of research on gonadotropin-inhibitory hormone and its receptors in fish. Journal of Fisheries of China, 2016, 40(2): 278–287 [王滨, 柳学周, 徐永江, 等. 鱼类促性腺激素抑制激素及其受体的研究进展. 水产学报, 2016, 40(2): 278–287]

Wang Q, Qi X, Guo Y,Molecular identification of GnIH/ GnIHR signal and its reproductive function in protogynous hermaphroditic orange-spotted grouper (). General and Comparative Endocrinology, 2015, 216: 9–23

Yang B, Jiang Q, Chan T,Goldfish kisspeptin: molecular cloning, tissue distribution of transcript expression, and stimulatory effects on prolactin, growth hormone and luteinizing hormone secretion and gene expression via direct actions at the pituitary level. General and Comparative Endocrinology, 2010, 165(1): 60–71

Yang Y, Gao J, Yuan C,Molecular identification of Kiss/GPR54 and function analysis with mRNA expression profiles exposure to 17alpha-ethinylestradiol in rare minnow. Molecular Biology Reports, 2016, 43(7): 739–749

Zhao Y, Wayne NL. Effects of kisspeptin1 on electrical activity of an extrahypothalamic population of gonadotropin- releasing hormone neurons in medaka (). PLoS One, 2012, 7(5): e37909

Zmora N, Stubblefield J, Golan M,The medio-basal hypothalamus as a dynamic and plastic reproduction-related kisspeptin-gnrh-pituitary center in fish. Endocrinology, 2014, 155(5): 1874–1886

Zmora N, Stubblefield J, Zulperi Z,Differential and gonad stage-dependent roles of kisspeptin1 and kisspeptin2 in reproduction in the modern teleosts, morone species. Biology of Reproduction, 2012, 86(6): 177

Zmora N, Stubblefield JD, Wong TT,Kisspeptin antagonists reveal kisspeptin 1 and kisspeptin 2 differential regulation of reproduction in the teleost,. Biology of Reproduction, 2015, 93(3): 76

Zohar Y, Munoz-Cueto JA, Elizur A,Neuroendocrinology of reproduction in teleost fish. General and Comparative Endocrinology, 2010, 165(3): 438–455

(编辑 陈严)

Regulatory Mechanisms of Kisspeptin on the Reproductive Axis in Fish

WANG Bin1,2, LIU Xuezhou1,2①, XU Yongjiang1,2, SHI Bao1,2, LIU Quan1,3

(1. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071; 2 Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071,; 3 College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306)

Kisspeptin (Kiss or Kp), a novel physiologically active peptide encoded by thegene, activates its cognate receptor KissR (also known as GPR54) in various target tissues to exert disparate functions, including inhibition of tumor metastasis and control of reproductive function. Thegene was originally isolated from human melanoma and breast cancer cells, and kisspeptin was initially called metastin in consideration of its suppressive effects on tumor growth and metastasis. With the exception of the platypus, a mammalian monotreme, which has two forms of kisspeptin genes (and), there is only one ligand,and its receptor,in placental mammals. However, this situation is different and even complex in non-mammalian species. Three/genes were described in amphibians, while searches in the chicken genome databases failed to identify these paralogous genes. To date, multiple forms of/genes have been identified in many teleosts, including Cypriniformes, Perciforms, Pleuronectiforms, Tetraodontiforms, Beloniforms, Scorpaeniformes, Salmoniformes and Gadiformes. A dual kisspeptin system,11and, have been detected in medaka, zebrafish, goldfish, chub mackerel, striped bass, and European sea bass, while onlywas identified in orange-spotted grouper, grass puffer,,,, and half-smooth tongue sole. In addition, the physiological relevance and functions of the Kiss/KissR system for the neuroendocrine regulation of reproduction remains to be established in fish. It should be noted that the mechanisms underlying the actions of Kiss on the hypothalamo-pituitary-gonadal (HPG) axis are still far from being fully understood. Given the multiple forms ofandgenes obtained in teleosts, the regulation of fish reproduction by the Kiss system is even complex. This review briefly summarized the progress of research on Kiss and its receptors, with special emphasis on the physiological functions of Kiss in fish, the signaling transduction pathways as well as the regulation ofgene expression. We hope that this review will contribute to future studies.

Fish; Kisspeptin; kisspeptin receptor; Reproduction; Signal transduction; Regulation of gene expression

LIU Xuezhou, E-mail: liuxz@ysfri.ac.cn

10.19663/j.issn2095-9869.20170424001

S917; Q575; Q492

A

2095-9869(2018)04-0173-12

* 中国水产科学研究院基本科研业务费(2017HY-XKQ01; 2017GH05; 2018GH17)、中国水产科学研究院黄海水产研究所基本科研业务费(20603022016018)、国家自然科学基金(31602133;31502145)、山东省自然科学基金(ZR2016CB02)和国家海水鱼类产业技术体系(CARS-47)共同资助[This work was supported by Grants from the Central Public-Interest Scientific InstitutionBasal Research Fund, CAFS (2017HY-XKQ01; 2017GH05; 2018GH17), Special Scientific Research Funds for Central Non-Profit Institutes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (20603022016018), the National Natural Science Foundation of China (31602133; 31502145), the Natural Science Foundation of Shandong Province (ZR2016CB02), and China Agriculture Research System (CARS-47)]. 王 滨,E-mail: wangbin@ysfri.ac.cn;柳学周,E-mail: liuxz@ysfri.ac.cn

# 共同第一作者

柳学周,研究员,E-mail: liuxz@ysfri.ac.cn

2017-04-24,

2017-05-18

王滨, 柳学周, 徐永江, 史宝, 刘权. Kisspeptin对鱼类生殖轴的调控机制研究. 渔业科学进展, 2018, 39(4): 173–184

Wang B, Liu XZ, Xu YJ, Shi B, Liu Q. Regulatory mechanisms of Kisspeptin on the reproductive axis in fish. Progress in Fishery Sciences, 2018, 39(4): 173–184

猜你喜欢
性腺下丘脑斑马鱼
男性腰太粗 性腺功能差
小斑马鱼历险记
葛洲坝下中华鲟(Acipenser sinensis)性腺退化严重吗?*
乳腺硬化性腺病的常规超声及超声造影表现和误诊分析
科学家发现控制衰老开关
瓜蒌不同部位对斑马鱼促血管生成及心脏保护作用
中药对下丘脑作用的研究进展
斑马鱼
兴奋下丘脑腹外侧视前区对结节乳头体核c-Fos表达的影响及其受体途径
小斑马鱼的奇遇