牛桂敏
摘要:新课程数学标准指出,在初中数学教学中要逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯。数学思想是对数学知识和方法的本质认识,而数学方法是解决数学问题的根本程序,是数学思想的具体反映。那么如何在数学教学中渗透数学方法和思想呢?笔者就初中数学教学中的数学方法和数学思想,谈谈自己的理解和认识。
关键词:初中数学;数学方法;数学思想
《数学课程标准》明确指出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。这就要求我们要把数学思想和数学方法作为一个重要的基础知识来学习,作为一个优秀的数学教师,应该在数学教学中重视数学思想和方法的渗透,以下笔者就谈谈,对数学方法和数学思想的理解和认识。
一、何为数学方法和数学思想
所谓数学方法就是解决数学问题的基本步骤,它是数学思想的具体反映。在教学的初步阶段,掌握数学方法至关重要。目前初中阶段,主要数学思想方法有:数形结合思想、分类讨论思想、整体思想、化归思想、转化思想、归纳思想、类比思想、函数思想、辩证思想、方程与函数思想方法等。所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。我们在解决数学问题所使用的方法中,往往都体现着数学思想。数学思想是数学教学的内核和重中之重,而数学方法则是数学教学的更为具体的内容。如果说数学思想是数学的灵魂,那么数学方法则是数学的行为。学生在不断运用数学方法解决数学问题的过程之中所积累的经验,会逐步地抽象和升级为数学思想。在初中数学教材中集中了大量的优秀例题和习题,它们所体现的数学知识和数学方法固然重要,但其蕴涵的数学思想却更显重要,作为一个执教者,在具体的数学教学中要加强对学生进行数学思想和数学方法的训练,要善于挖掘例题、习题的潜在功能。
二、熟悉课程标准,适时渗透数学方法与数学思想
《数学课程标准》是数学教学之根本,课标中明确对数学方法和思想的教学分为三个层次,即“了解”、“理解”和“会应用”。三个层次由低到高,由简单到复杂。课标对各种数学思想和方法都提出了具体的要求层次,如要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。要求“理解”和“会应用”的方法有:待定系數法、消元法、降次法、配方法、换元法、图像法等。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次,不能随意设置难度,否则,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致丧失学习的信心。在初中数学教学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。只是方法较具体,而思想则抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题,以致达到数学思想的境界,使得数学方法和思想相互渗透。 如初中数学七年级上册课本《有理数》这一章,在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比较大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散,又向学生渗透了数形结合的思想,学生易于接受。
三、适时提炼和概况,将数学方法与思想完美结合
在数学教学的过程中,提炼和概况非常重要,它可以引导学生对知识进行总结归纳,帮助学生梳理知识。在数学教材中数学思想、方法分散在各个不同部分,而同一问题又可以用不同的数学思想、方法来解决。因此教学时教师要有意识地培养学生自我提炼、揣摩概括数学思想方法的能力,这样才能把数学思想、方法的教学落在实处,才能让数学方法和思想完美结合。如讲“利用待定系数法确定二次函数解析式”时,可启发学生去发现确定解析式的关键是求出各项系数,可把他们看成三个“未知量”,告诉学生利用方程思想来解决,那学生就会自觉的去找三个等量关系建立方程组。在这里如果单讲解题步骤,就会显得呆板、僵硬,学生只知其然,不知其所以然。与此同时,还要注意渗透其他与方程思想有密切关系的数学思想,诸如换元、消元、降次、函数、化归、整体、分类等思想,这样可起到拨亮一盏灯,照亮一大片的作用。
总之在初中数学教学的过程中,要熟悉课程标准,把握数学方法和数学思想的三个层次,要善于捕捉时机,善于从具体的问题中提炼出具有普遍指导作用的数学思想方法,不断向学生渗透、强化,从而上升为数学思想,建构全面完整的数学知识体系,全面提升数学素养,最终有效应用数学知识,形成数学能力。