郑秋容,王 辉
(空军工程大学 信息与导航学院, 西安 710077)
卫星通信的频段大部分集中在C,Ku,Ka甚至V波段,现代的卫星通信系统需要一种能够实现不同频段间的频率转换的设备[1-2]。然而,传统的电学变频系统由于调制带宽、电磁干扰、体积重量、结构复杂的限制,无法在未来大容量、多用户的卫星载荷上使用[3]。幸运的是,光学技术可以有效解决电学系统面临的问题,并同时实现多频段间的相互变频[4]。
近年来,人们提出了很多关于实现变频的方法[5-11],但这些方案都关注于实现单一频率向另一个单一频率的变换,而无法实现多频段信号的同时产生。光频梳技术的出现,提供了新的变频思路,使得这个问题得以有效的解决[12-15]。参考文献[14]中提出的方法具有很大的启发性。在该方案中,首先同时产生两个不同频率的载波,其中一个载波通过接收到的射频(radio frequency,RF)信号进行调制,产生频率间隔与RF信号频率相同的光频梳。另一个载波通过本振(local,LO)信号进行调制,产生频率间隔与LO信号频率相同的光频梳。通过滤波器滤出所需的两个边带,并进行拍频,可以得到相应频率差的微波信号,从而实现变频。然而该系统结构较为复杂。
本文中提出一种更加简单的基于双光频梳的变频方法,可以通过一个频率,同时产生多个频段的信号。值得一提的是,两个光频梳中心频率间的频率差取决于所接收到的信号,这使得整个系统更加灵活可变。
如图1所示,由激光器辐射出的光信号可表示为:
Ec(t)=Ecexp(j2πfct)
(1)
式中,Ec和fc分别表示载波信号的幅度和频率。系统接收到的微波射频信号为:Vs(t)=Vscos(2πfst),其中Vs是射频信号的幅度,fs是射频信号的频率。通过双驱动马赫-曾德尔调制器(dual-driven Mach-Zehnder modulator,D-MZM)对光载波进行调制。调整该调制器中的直流偏置点,可以实现单边带(single sideband,SSB)调制。经过Jacobi-Anger展开,输出信号的表达式为:
2J1(ms)cos[2π(fc+fs)]
(2)
式中,ms=πVs/Vπ是D-MZM的调制系数,Vπ是调制器的半波电压,J1和J0代表贝塞尔展开的系数。在小信号条件下,1阶以上的边带可以被忽略。从(2)式中可以看出,经过SSB调制,载波和+1阶边带被保留下来。
Fig.1 Schematic diagram of multiband frequency generation
光纤布喇格光栅(fiber Bragg grating, FBG)的中心频率与载波信号的频率相同。调制后的信号经过环形器和FBG之后,由于FBG本身的滤波特性,将载波信号反射回去,而+1阶信号通过。由此,载波信号进入到下支路,+1阶信号进入上支路。在上下两支路中,各有一个由双平行马赫-曾德尔调制器(dual-parallel Mach-Zehnder modulator,DP-MZM)组成的光频梳(optical frequency comb,OFC)产生器(OFC generator 1和OFC generator 2)[15]。OFC1由本振信号VLO1(t)=Vm,1cos(2πfLO1t)驱动,OFC2由另一个本振信号VLO2(t)=Vm,2cos(2πfLO2t)驱动。其中,Vm,1和Vm,2分别表示两个本振信号的幅度,fLO1和fLO2表示两个本振信号的频率。
上支路产生的OFC1中的每一根频梳可表示为:
fOFC1=fc+fs+ifLO1
(3)
式中,参量i(1≤i≤n)表示各个频梳(光边带)相对于载波的阶数,n是产生出光频梳的最高阶数。与此相同,下支路同样也产生出光频梳信号,各个频梳可表示为:
fOFC2=fc+ifLO2
(4)
两路信号在3dB耦合器的作用下,耦合成一路信号,频谱示意图如图2所示,其中fout,i是第i对光边带之间的频率差。
Fig.2 Schematic illustration of multiband signal generation
为了保证每对频梳能够准确地落入波分复用器中的各个滤波器的频带内,fLO1和fLO2都需要进行相应的调整。满足以下条件:
(5)
式中,dBW是波分复用器(wavelength division multiplexing,WDM)的带宽。滤出的各对频梳在光电探测器(photo-detector,PD)的作用下,得到相应的频率,从而达到变频的目的:
fout,i=fs+i|fLO1-fLO2|
(6)
由于实验条件的限制,本文中只能进行仿真验证。如图3所示,通过软件OPTISYSTEM 7.0搭建该变频系统。由激光器辐射出的的光信号具有1552.52nm的中心波长,该信号首先被引入到D-MZM中进行SSB调制。D-MZM的消光比设置为20dB,半波电压为4V。从图3中的B点位置波形可以看出,载波信号和+1阶边带被保留,它们被作为之后两个OFC产生器的两个载波信号。图中,DCb表示D-MZM的直流偏置点;DP-MZMx和DP-MZMy分别表示两个支路(上支路x和下支路y)上的DP-MZM;DCb,x1~DCb,x3是DP-MZMx中的3个直流偏置点;DCb,y1~DCb,y3是DP-MZMy中的3个直流偏置点。
Fig.3 Simulation setup of multiband frequency conversion scheme
FBG的中心波长也设置为1552.52nm,因此,光信号通过环形器之后,首先进入到上支路的FBG中,由于波长匹配,载波信号被反射到下支路,而+1阶边带通过FBG,留在上支路中。之后,两路的光信号分别进入到两个由DP-MZM组成的OFC产生器中。DP-MZM的消光比也设为20dB,半波电压为4V。这种OFC产生器结构简单,只需要一个微波源和一个DP-MZM就能够产生平坦的光频梳[11],从参考文献[11]中的实验结果可知,该方法可以产生出具有7根光边带的光频梳,平坦度小于1dB。杂散边带抑制比可达11dB。调整DP-MZM中的直流偏置点,设置为:ms=3.05,Vs=1.94Vπ,加在3个直流偏置点上的直流偏置电压分别为Vb,1=0.63Vπ,Vb,2=0.92Vπ,Vb,3=0.73Vπ,可以得到具有7根边带的光频梳。
在本次仿真中,两个本振信号的频率设置为fLO1=36GHz,fLO2=40GHz。经过耦合器之后,该耦合信号被掺铒光纤放大器(erbium-doped optical fiber amplifier,EDFA) 进行功率放大,频谱如图4所示。
波分复用器中设置7个通频带,每个通频带的中心频率分别设为192.966THz,193.006THz,193.046THz,193.086THz,193.126THz,193.166THz和193.206THz,带宽均为36GHz。在波分复用器的作用下,系统滤出7对频梳,通过光电探测器,可以得到7个不同频率的微波信号,结果如图5所示。
Fig.4Spectrum diagrams of OFC1and OFC2with frequency intervals of 36GHz, 40GHz respectively
从图5中可以看出,15GHz(Ku波段)的信号可以被同时转化成3GHz(S波段),7GHz(C波段),11GHz(X波段),19GHz(K波段),23GHz(K波段)和27GHz(Ka波段)的微波信号。转化后的信噪比在28.83dB~29.99dB之间。
本方案中使用了3个调制器(1个D-MZM,2个DP-MZM),共有7个直流偏置点,因此直流偏置点的漂移将会对系统的输出造成影响。为了衡量信号的变频质量,本文中研究了变频效率的问题。变频效率是衡量一个变频系统性能的重要指标,定义为输出信号功率与输入信号功率的比值。通过改变参量,使得直流偏置电压的偏移原数值的-50%~50%。则系统的变频效率如图6所示。从图中可以看出,随着偏移量从-50%~50%变化,变频效率先是处在一个平稳的阶段,保持在-22dB左右,之后便急剧下降。由此可以看出,直流偏置点的漂移对系统具有较大的影响。
Fig.5 Multi-band frequencies under different bands
Fig.6 The impact of DC bias drafting for onthe conversion efficiency
作者提出了一种基于双光频梳的多频段变频方法,能够将单一频率同时转化成多个不同频段的频率,并通过仿真验证了其可行性。从仿真结果看,Ku波段的15GHz的频率可变换成3GHz,7GHz,11GHz,19GHz,23GHz,27GHz,信噪比可达28.83dB~29.99dB。影响该系统变频结果的主要因素是直流偏置点的漂移。