肖俊豪 权巍 许强 吴志军 杨昉 孙康健 卢光明 张志强
2.排除标准 (1)左利手。(2)常规MRI检查存在除海马硬化外的其他颅内病灶。(3)合并其他神经系统疾病及其他严重系统性疾病。
3.一般资料 选择2009年7月-2016年10月在解放军南京总医院明确诊断为单侧内侧颞叶癫的患者共计40例,根据发作类型分为部分性发作和继发全面性发作。(1)部分性发作组(mTLE⁃PS组):共20例,男性5例,女性15例;年龄18~40岁,平均(27.60±8.43)岁;病程1个月至31年,中位病程12.00(1.58,21.00)年;左侧发作 10例,右侧 10例。(2)继发性全面性发作组(mTLE⁃sGS组):共20例,男性6例,女性14例;年龄18~45岁,平均(28.17±9.26)岁;病程3个月至37年,中位病程10.83(1.42,19.25)年;左侧发作 10例,右侧 10例。(3)正常对照组:选择同期在我院进行体格检查的健康志愿者共20例,男性5例,女性15例;年龄19~42岁,平均(27.55±7.77)岁。3组受试者性别(χ2=0.170,P=0.918)和年龄(F=0.250,P=0.975)比较,差异无统计学意义;两组内侧颞叶癫患者病程比较,差异亦无统计学意义(Z=0.298,P=0.766),均衡可比。
1.头部MRI检查 受试者以医用海绵垫固定头部、耳塞降低噪音,采用德国Siemens公司生产的Magnetom Trio Tim 3.0T MRI扫描仪,8通道头部线圈,梯度场强40 mT/m,进行矢状位T1⁃三维磁化准备快速梯度回波(T1⁃3D⁃MPRAGE)扫描,扫描参数为:重复时间(TR)2300 ms、回波时间(TE)298 ms、反转时间(TI)400 ms,翻转角(FA)9°,扫描视野(FOV)256 mm×256 mm,矩阵256×256,激励次数(NEX)为1次,层厚 1 mm、层间距为零,扫描时间590 s,共176层,扫描范围覆盖全脑。同时行T1WI、T2WI、扩散加权成像(DWI)和 T2⁃FLAIR 成像。(1)T1WI:重复时间280 ms、回波时间2.50 ms,扫描视野240 mm×240 mm,矩阵256×320,激励次数2次,层厚5 mm、层间距6.50 mm,扫描时间92 s,共扫描30层,扫描范围覆盖全脑。(2)T2WI:重复时间 4000 ms、回波时间98 ms,扫描视野240 mm×240 mm,矩阵307×512,激励次数2次,层厚5 mm、层间距6.50 mm,扫描时间 90 s,共 30层,扫描范围覆盖全脑。(3)DWI序列:重复时间3000 ms、回波时间91 ms,扫描视野218 mm×240 mm,矩阵174×192,激励次数2次,层厚为5 mm、层间距6.50 mm,扫描时间59 s,共扫描36层,扫描范围覆盖全脑。(4)T2⁃FLAIR 成像:重复时间8000 ms、回波时间93 ms,扫描视野199 mm×220 mm,矩阵232×256,激励次数2次,层厚5 mm、层间距6.50 mm,扫描时间114 s,共扫描28层,扫描范围覆盖全脑。
2.图像处理与数据分析 采用MRIcron软件包(http://www.mricro.com)将DICOM格式文件转换为Nifti_1格式图像;将左侧海马硬化患者的图像进行镜面翻转,统一将右侧海马硬化定义为患侧、左侧定义为健侧;采用VBM8软件(http://dbm.neuro.uni-jena.de/vbm8)分割成灰质、白质和脑脊液,通过VBM法获得相对体积和全脑体积;将获得的灰质图像进行8 mm×8 mm×8 mm半高全宽(FWHM)的高斯平滑处理。针对灰质体积,采用SPM8软件(http://www.fil.ion.ucl.ac.uk/spm)建立广义线性模型,采用单因素方差分析,剔除性别、年龄、全脑体积等协变量的影响,族错误率(FWE)校正后以P≤0.01为差异具有统计学意义,获得统计脑图。选取内侧颞叶癫患者双侧额叶和丘脑作为兴趣区(ROI),以全脑体积作为协变量,分析各脑区灰质体积与病程的相关性。
3.统计分析方法 采用SPSS 23.0统计软件进行数据处理与分析。计数资料以相对数构成比(%)或率(%),采用χ2检验。正态性检验采用Kolomogorov⁃Simirnov检验,呈正态分布的计量资料以均数±标准差表示,采用单因素方差分析,两两比较行LSD⁃t检验;呈非正态分布的计量资料以中位数和四分位数间距[M(P25,P75)]表示,采用Mann⁃Whitney U检验。内侧颞叶癫患者各脑区灰质体积与病程的相关性采用Spearman秩相关分析。以P≤0.05为差异具有统计学意义。
3组受试者双侧额上回、右侧额中回、右侧额内侧回、右侧角回、右侧颞中回、右侧海马、双侧丘脑和双侧小脑半球灰质体积差异有统计学意义(均P<0.01,FWE校正),与正常对照者相比,内侧颞叶癫患者以致灶侧为主的双侧大脑半球广泛性灰质体积减少,其中,mTLE⁃PS组主要包括双侧额上回、小脑半球和右侧颞中回、海马、丘脑,mTLE⁃sGS组主要包括双侧额上回、丘脑、小脑半球和右侧角回、颞中回、海马;与mTLE⁃PS组相比,mTLE⁃sGS组双侧额上回、丘脑和右侧额内侧回、直回灰质体积减少(均P<0.01,FWE校正;图1;表1,2)。
mTLE⁃PS组患者左侧额上回、右侧额中回和双侧丘脑灰质体积与病程无关联性(均P>0.05);mTLE⁃sGS组患者左侧额上回(rs=⁃0.611,P=0.004)和右侧额中回(rs=⁃0.562,P=0.010)与病程呈负相关,而双侧丘脑与病程无关联性(P>0.05,表3)。
图1 3组受试者各脑区灰质体积的比较(P<0.01,FWE校正) 1a 与正常对照组相比,mTLE⁃PS组双侧额上回、小脑半球和右侧颞中回、海马、丘脑灰质体积减少(蓝色区域所示) 1b 与正常对照组相比,mTLE⁃sGS组双侧额上回、丘脑、小脑半球和右侧角回、颞中回、海马灰质体积减少(蓝色区域所示) 1c 与mTLE⁃PS组相比,mTLE⁃sGS组双侧额上回、丘脑和右侧额内侧回、直回灰质体积减少(蓝色区域所示)Figure 1 Comparison of gray matter volumes of brain regions among 3 groups(P<0.01,FWE correction).Compared with control group,gray matter volumes in bilateral superior frontal gyri,bilateral cerebellar hemispheres,right middle temproral gyrus,right hippocampus and right thalamus in mTLE⁃PS group were significantly decreased(blue areas indicate,Panel 1a).Compared with control group,gray matter volumes in bilateral superior frontal gyri,bilateral thalami,bilateral cerebellar hemispheres,right angular gyrus,right middle temproral gyrus and right hippocampus in mTLE⁃sGS group were significantly decreased(blue areas indicate,Panel 1b).Compared with mTLE⁃PS group,gray matter volumes in bilateral superior frontal gyri,bilateral thalami,right medial frontal gyrus and right gyrus rectus in mTLE⁃sGS group were significantly decreased(blue areas indicate,Panel 1c).
表1 3组受试者灰质体积减少的脑区Table 1. Brain regions with decreased gray matter volumes in 3 groups
表2 3组受试者各脑区灰质体积的两两比较Table 2. Paired comparison of gray matter volumes in brain regions of 3 groups
表3 mTLE⁃PS组和mTLE⁃sGS组患者各脑区灰质体积与病程的相关分析Table 3. Correlation analysis between gray matter volumes and duration in mTLE⁃PS group and mTLE⁃sGS group
[1]Bai ZJ,Zhang ZQ,Lu GM.Development of diffusion tensor imaging in mesial temporal lobe epilepsy[J].Zhongguo Yi Xue Ying Xiang Ji Shu,2010,26:178⁃180.[白卓杰,张志强,卢光明.磁共振弥散张量成像在内侧颞叶癫痫中的应用进展[J].中国医学影像技术,2010,26:178⁃180.]
[2]Riederer F,Lanzenberger R,Kaya M,Prayer D,Serles W,Baumgartner C.Network atrophy in temporal lobe epilepsy:a voxel⁃based morphometry study[J].Neurology,2008,71:419 ⁃425.
[3]Commission on Classification and Terminology of the InternationalLeague AgainstEpilepsy.Proposalforrevised clinical and electroencephalographic classification of epileptic seizures[J].Epilepsia,1981,22:489⁃501.
[4]Moran NF,Lemieux L,Kitchen ND,Fish DR,Shorvon SD.Extrahippocampal temporal lobe atrophy in temporal lobe epilepsy and mesial temporal sclerosis[J].Brain,2001,124:167⁃175.
[5]Zhang ZQ,Liao W,Xu Q,Wei W,Zhou HJ,Yang F,Mantini D,Ji X,Lu G.Hippocampus⁃associated causal network of structural covariance measuring structural damage progression in temporal lobe epilepsy[J].Hum Brain Mapp,2017,38:753⁃766.
[6]LabateA,CerasaA,AgugliaU,MumoliL,QuattroneA,Gambardella A.Voxel⁃based morphometry of sporadic epileptic patients with mesiotemporal sclerosis[J].Epilepsia,2010,51:506⁃510.
[7]Bernasconi N,Duchesne S,Janke A,Lerch J,Collins DL,Bernasconi A.Whole⁃brain voxel⁃based statistical analysis of gray matter and white matter in temporal lobe epilepsy[J].Neuroimage,2004,23:717⁃723.
[8]Chan CH,Briellmann RS,Pell GS,Scheffer IE,Abbott DF,Jackson GD.Thalamic atrophy in childhood absence epilepsy[J].Epilepsia,2006,47:399⁃405.
[9]Ciumas C,Savic I.Structural changes in patients with primary generalized tonic and clonic seizures[J].Neurology,2006,67:683⁃686.
[10]Bertram EH,Scott C.The pathological substrate of limbic epilepsy:neuronal loss in the medial dorsal thalamic nucleus as the consistent change[J].Epilepsia,2000,41:S3⁃8.
[11]Bertram EH,Mangan PS,Zhang DX,Scott CA,Williamson JM.The midline thalamus:alterations and a potential role in limbic epilepsy[J].Epilepsia,2001,42:967⁃978.
[12]Meeren HK,Pijn JP,Van Luijtelaar EL,Coenen AM,Lopes da Silva FH.Corticalfocus drives widespread corticothalamic networks during spontaneous absence seizures in rats[J].J Neurosci,2002,22:1480⁃1495.
[13]Chang BS,Lowenstein DH.Epilepsy[J].N Engl J Med,2003,349:1257⁃1266.