王凯锋 冯义成 张靖 赵思聪 王丽萍 郭二军
摘要:为了研究等温处理工艺对Mg3Al2Ca2Nd合金组织和性能的影响,利用XRD、OM、SEM、EDS及拉伸试验机对试样进行组织观察和性能测试。结果表明,与铸态组织相比,420℃等温处理的组织变化不明显,随着等温处理温度升高,铸态枝晶组织消失,转变为等轴晶组织且晶粒尺寸变大。在等温处理过程中,Al11Nd3相发生分解,生成热稳定性高的Al2Nd相,而Al原子固溶到αMg基体中;层片状AlCa金属间相转变为颗粒状组织。随等温处理温度增加,硬度、抗拉强度和延伸率先增加后降低,在480℃时达到最大值,其值分别为66.3HV、144.5MPa和2.7%。
关键词:镁合金;等温处理;显微组织;力学性能
DOI:10.15938/j.jhust.2018.01.007
中图分类号: TG166;TB31
文献标志码: A
文章编号: 1007-2683(2018)01-0035-06
Abstract:The microstructure and mechanical properties of Mg3Al2Ca2Nd alloy ascast and isothermal treated were studied by using XRD, OM, SEM, EDS and universal tensile testing machine. The experimental results indicate that the microstructure of Mg3Al2Ca2Nd alloy isothermal treated at 420℃ changes slightly compared to that of ascast alloy. With the increasing of isothermal treated temperature, the dendritic structure in ascast Mg3Al2Ca2Nd alloy disappears, equiaxed grains appear, and the size of grain increases in isothermal treated Mg3Al2Ca2Nd alloy. The Al11Nd3 phases decompose and the Al2Nd phases with high thermal stability are produced, and the Al is dissolved into αMg in the process of isothermal treatment. The flake AlCa phases are changed into particle phases in the process of isothermal treatment. With the increasing of isothermal treated temperature, the hardness, tensile strength and elongation of Mg3Al2Ca2Nd alloy increase first and then decrease, and the maximum value of hardness, tensile strength and elongation of Mg3Al2Ca2Nd alloy treated at 480℃ are 66.3 HV, 144.5 MPa and 2.7%, respectively.
Keywords:magnesium alloy; isothermal treatment; microstructure; mechanical property
0引言
作為高性能轻合金材料,镁合金具有比强度高、铸造成形性好、阻尼吸震降噪性能优越、电磁屏蔽能力强等优异性能,被称为“21世纪最具开发应用潜力的绿色工程材料”,并在《新材料产业“十三五”发展规划》中被列为重点发展领域,成为国内外普遍关注的焦点[1-5]。MgAl系合金是目前应用最广泛的镁合金系列,在汽车和3C工业上发展极其迅速,汽车工业已成为镁合金应用的主要驱动力,在汽车工业上的镁合金的消费占其总消费80%左右。在MgAl系合金中加入碱土元素或(和)稀土元素形成耐热稳定的金属间相,抑制βMg17Al12相的形成,改变MgAl系合金显微组织,从而提高耐热性能[6-9]。近年来,在MgAl系合金中复合加入碱土元素和稀土元素研究受到企业及研究者们的极大重视。在MgAl合金中加入合金元素Ca和Nd,可以显著提高合金的力学性能和阻燃性能[10-12],MgAlCaNd四元合金中各元素之间可以形成多种金属间相,金属间相在基体中的稳定性影响MgAl系合金的耐热性能,通过等温处理,评价Ca和Nd复合合金化MgAl系合金中金属间相的稳定性[13-15],从而可以间接评价其耐热性能。
因此,本文在本课题组前期研究的基础上,选用Mg3Al2Ca2Nd镁合金为研究对象,对其进行高温等温处理,研究等温处理对Mg3Al2Ca2Nd镁合金的显微组织和力学性能的影响规律。
1试验材料与方法
原材料选用纯度99.5%(质量分数,下同)的纯Mg锭和99.7%的纯Al 锭,合金元素Ca和Nd分别以Mg30Ca和Mg26.4Nd中间合金的形式加入。镁合金试样采用井式电阻炉熔炼,坩埚采用低碳钢坩埚,实验所用原材料均需200℃预热烘干。当电阻炉炉温升至500℃,将预热的纯Mg锭和纯Al锭加入坩埚中,并在Mg锭和Al锭表面撒一层RJ2覆盖剂,然后电炉升温至720℃,直至纯Mg锭和纯Al锭熔化,然后升温至750℃,加入MgCa和MgNd中间合金,然后保温15min,搅拌,然后将熔炼好的合金浇注到预热温度为200℃的金属型中。镁合金铸锭直径为60mm,高度为200mm,浇注过程中采用SF6+CO2作为保护气体。将制备的铸锭切割为厚度为25mm的圆片,备等温处理用。本研究根据MgAlCa及MgAlNd相图以及相关文献[16,17]选择等温温度为420℃、450℃、480℃和510℃,等温处理时间固定为11h。
对不同等温处理工艺的镁合金试样进行微观组织观察、XRD分析及力学性能测试。采用Rigaku Rotaflex D/MA X射线衍射分析仪对铸态试样和等温处理试样进行结构分析。金组织观察试样3.5%的硝酸酒精进行腐蚀,采用OLYMPUSGX71光学显微镜和 FEI Sirion 2000扫描电镜观察组织和形貌,并用能谱分析进行典型相的成分分析。硬度测试采用维氏硬度计,加载力为1N,保压时间为15s,每个试样测7个点,取平均值。利用CSS44300型电子万能试验机进行拉伸性能测试,拉伸试样为板状试样。
参 考 文 献:
[1]ESGANDARI B A, MEHRJOO H, NAMI B, et al. The Effect of Ca and RE Elements on the Precipitation Kinetics of Mg17Al12 Phase During Artificial Aging of Magnesium Alloy AZ91[J]. Materials Science & Engineering A, 2011,528(15):5018-5024.
[2]何柏林,张志军. 镁合金晶粒细化研究进展[J]. 兵器材料科学与工程, 2015, 38(5):116-120.
[3]甘俊雄,张帆,韩修柱,刘楚明. 混合稀土对AZ80镁合金显微组织和力学性能的影响[J]. 兵器材料科学与工程, 2015, 38(1):81-85.
[4]AGHION E., BRONFIN B. Magnesium Alloys Development Towards the 21st Century [J]. Materials Science Forum, 2000, 350 -351(1): 179 -281.
[5]张丁非, 张红菊, 兰伟, 等.高强镁合金的研究进展[J]. 材料热处理学报, 2012, 33(6):1-5.
[6]JESSICA R. Terbush, NICHOLAS D. SADDOCK, J. et al. Partitioning of Solute to the Primary aMg Phase in CreepResistant MgAlCaBased Cast Alloys[J]. Metallurgical and Materials Transactions A,2010(41): 2435-2442.
[7]LIU Manping, WANG Qudong, LIU Zili, et al. Behavior of MgAlCa Alloy During Solution Heat Treatment at 415℃[J]. Journal of Materials Science Letters, 2002(21):1281-1283.
[8]SADDOCK N.D., SUZUKI A., JONES J.W, et al. Grainscale Creep Processes in MgAlCa base Alloys: Implications for Alloy Design[J]. Scripta Materialia, 2010(63): 692-697.
[9]HOMMA T., NAKAWAKI S., KAMADO S. Improvement in Creep Property of a Cast Mg6Al3Ca Alloy by Mn Addition[J]. Scripta Materialia, 2010(63): 1173-1176.
[10]张靖,冯义成,王琴,等. Ca 和Nd 复合合金化Mg6Al 合金显微组织和力学性能的研究[J]. 稀土, 2016, 37(4):86-90.
[11]冯义成, 王琴, 姜文勇,等. 固溶处理对Mg6Al2Ca2Nd合金组织和性能的影响[J]. 金属热处理, 2013,38(11):26-29.
[12]冯义成, 王琴, 杨建辉, 等. Ca 对Mg6Al1Nd 合金显微组织和性能的影响[J]. 哈尔滨理工大学学报, 2014, 19(5):10-13.
[13]HAKAMADA M, WATAZU A, SAITO N, et al. Effects of Homogenization Annealing on Dynamic Recrystallization in MgAlCaRE (Rare Earth) Alloy[J]. Materials Transactions, 2008, 49(5):1032-1037.
[14]SU M L, ZHANG J H, FENG Y, et al. AlNd Intermetallic Phase Stability and Its Effects on Mechanical Properties and Corrosion Resistance of HPDC Mg4Al4Nd0.2Mn Alloy[J]. Journal of Alloys and Compounds, 2017(691): 634-643.
[15]JIAO Y F, ZHANG J H, HE L L, et al. AlRE Intermetallic Phase Stability and Effects on Corrosion Behavior in ColdChamber HPDC AE44 Alloy[J]. Advanced Engineering Materials, 2016, 18(1):148-155.
[16]MASAKI S . Microstructure Development of Sandcast AZtype Magnesium Alloys Modified by Simultaneous Addition of Calcium and Neodymium[J]. Journal of Alloys and Compounds, 2008(460): 619-626.
[17]SUZUKI A, SADDOCK ND, JONES JW, et al. Solidification Paths and Eutectic Intermetallic Phases in MgAlCa Ternary Alloys[J]. Acta Mater, 2005, 53: 2823-2834.
[18]刘阳力, 张金玲, 刘军, 等. 固溶时间对AZG315镁合金显微组织演变的影响及其作用机制[J]. 材料热处理学报, 2016, 37(6):49-53.
[19]李全安,陈晓亚,刘文健,等.复合添加Sm与Nd对AZ81鎂合金组织和性能的影响[J].稀土, 2015,36(2):37-40.
[20]邝亚飞, 王泽辉, 房大庆,等.时效处理对热挤压MgZn(=1,3,5)Y合金组织与力学性能的影响[J]. 中国稀土学报, 2016, 34(5):600-604.
(编辑:王萍)