李翔 党晓楠
摘 要:增塑纺丝作为一种新型的聚丙烯腈基碳纤维原丝的制备方法受到了广泛关注。该制备方法采用较少溶剂,纤维结构容易控制;但制备方法对纺丝设备以及工艺技术的要求高,尚未被应用于工业化。本文将对目前的增塑纺丝研究现状进行全面总结,同时,对未来的研究方向进行展望。
关键词:增塑纺丝 聚丙烯腈 制备
中图分类号:TQ342 文献标识码:A 文章编号:1672-3791(2018)09(b)-0001-04
Abstract: As a new type of polyacrylonitrile-based carbon fiber precursor, plasticized spinning has received extensive attention. A small amount of solvent is used in this method and it is easy to control the fiber structure. However, this method has high requirements on spinning equipment and process technology, and has not been industrialized. This paper will comprehensively summarize the current research status of plasticized spinning, at the same time, we also forecast the future research trends.
Key Words: Plasticized spinning; Polyacrylonitrile; Preparation
聚丙烯腈(PAN)由于其分子链氰基之间存在着极强的偶极作用力,导致熔点高于分解点温度,不能通过常规方法实现熔融纺丝[1-3]。目前,世界范围内工业化生产PAN原丝通常采用溶液纺丝工艺[4-6],但国内相关生产企业尚未真正掌握该生产技术,所制备原丝存在着许多结构缺陷,例如截面为腰圆形[7],存在皮芯结构[8],表面存在大量沟槽、孔洞[9,10]。结构的缺陷导致原丝无法成为合格的碳纤维前驱体。目前,国内外相关学者提出了新型的纺丝工艺—增塑纺丝工艺,通过内增塑与外增塑法实现PAN的增塑纺丝[11,12]。与溶液纺丝工艺相比,结构可控性强,不需要溶剂或仅需少量增塑剂,是一种经济高效的纺丝方法[13]。
1 内增塑纺丝方法
近年来国外BASF公司、BP/Amoco公司、日本三菱人造丝公司采用内增塑法实现了PAN纤维的融纺生产[14-18]。他们在PAN聚合的过程中加入了第二单体有丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯(MA)、丙烯酸丁酯和偏氯乙烯等。引入此类单体降低了氰基之间的相互作用,从而有效降低了PAN熔点,实现了PAN熔融纺丝。美国BP Amoco公司[19]首先合成出了10mol%MA的聚合物,通过了熔融纺丝工艺制备了PAN纤维,其商品名为Amlon。日本三菱人造丝公司同样通过共聚MA制备了优良的PAN纤维,其纤维断裂伸长率大于10%,最大断裂强力达到7.5cN/dtex,其发明专利已见报道[20]。美国标准石油公司专利制备含有MA(10%~80%)和AN(20%~90%)稳定可加工的聚合物,亦可形成纤维[21]。
Mukundan等人[22]以85/14/1的摩尔比制备了丙烯腈 (AN)/MA/乙烯基吡咯烷酮共聚物,成功实现了熔融纺丝,初生纤维直径为14~40μm,断裂强度约为70~245MPa。Han等人[23]合成了一系列摩尔比为85/15的AN/MA共聚物,并探讨了不同的合成温度对共聚物可纺性能的影响。Rangarajan等人[24]系统性地研究了共聚单体种类及含量对体系熔融稳定性的影响。研究结果表明,MA是合适作为共聚单体从而实现熔融纺丝,当分子量为50000g/mol,MA含量为10mol%时,PAN共聚物具有熔融流动性。而当分子量为100000g/mol,MA含量为15mol%时,共聚物具有可纺性。Deng等人[25]的研究结果表明,当乙烯基咪唑的含量为12mol%时,纤维能实现熔融纺丝。Bhanu等人[26]的研究结果同样显示当体系MA含量高于10mol%时,体系显示了很好的熔融可纺性。
国内的学者同样获得了大量的研究结果,陈蕾等人[20]的研究结果表明,含大量共聚单体的PAN以在190℃~220℃温度范围熔融挤出。随着温度的增加,熔体的流动性能不断变好。于万永等人[27]所制备的85/15的AN/MA共聚物可在高温下可进行熔融加工。李慧慧等人[28]采用7~20mol%的N-乙烯基咪唑作为第二单体与丙烯腈进行均相溶液聚合,当第二单体的含量高于10mol%时,共聚物可熔融加工。80/20的丙烯腈-N-乙烯基咪唑共聚物初生纤维的断裂强度为1.58cN/dtex,断裂强度为11.2%。
综上所述,第二单体的加入能实际有效地改善PAN的熔融加工性能,但体系存在一个共聚单体含量的最小值(10mol%)以确保能破坏PAN聚合物的长程有序结构,从而进行熔融加工。当引入过量第二单体时,常规通过热处理实现分子链氰基的环化变得非常困难,需要使用紫外照射、等离子等特殊方法,使得后续的预氧化阶段变得更加地繁琐,同时碳纤维的得碳率也会降低。
2 外增塑纺丝方法
外增塑法是通过添加一定量增塑剂,破坏PAN晶区的有序结构,降低熔点,从而实现增塑熔融纺丝[29]。所制备的初生纤维采用水洗或萃取等方法去除增塑剂,得到性能优良的纤维。
早在1952年,Coxe等人[29]就已发现PAN和水在高压下混合后可以熔融挤出,但由于水的易蒸发性,并未实现PAN熔融纺丝。Grove等人[30]以水作为增塑剂,实现了PAN纤维的增塑纺,但使用水作为增塑剂所制备的纤维具有明显的缺陷与内在孔洞。发展到现代,有学者采用碳酸丙烯酯(PC)或者是碳酸乙烯酯(EC)實现PAN的增塑纺丝。Atureliya等人[19]研究表明PAN/PC(50∶50wt.%)体系在220℃条件下可熔融挤出。增塑体系在该温度下PC蒸发明显,在纤维表面形成气泡,纤维结构存在缺陷。Vaisman等人[31]研究了增塑纺PAN/EC(60:40wt.%)长条的力学性能,结果表明所制备纤维的直径范围为325~900μm,表面有明显的挤出沟槽,纤维断裂强度不高于60MPa。Min等人[32]使用水与稀醋酸作为增塑剂制备了PAN/壳聚糖复合纤维,使用水增塑PAN,同时使用稀醋酸塑化壳聚糖。制备的纤维呈现多孔,纤维状结构。
从技术上看,PAN增塑纺丝经历了水增塑、气体增塑到各种传统溶剂增塑的工艺技术[33]。但增塑剂本身极性弱、挥发性强等缺陷导致所制备纤维存在明显缺陷。产品各项性能都未能接近工业化水平,若要再上一个台阶,则应该是对增塑剂进行优化选择。
目前,已有学者采用离子液体(ILs)作为PAN的增塑剂,成功制备了性能优良的PAN原丝。例如张兴祥等人[34]在AN/MA(85/15mol%)共聚物的基础上加入0%~10%的1-乙基-3甲基咪唑六氟磷酸盐([Emim]PF6),观察[Emim]PF6的加入对体系加工性能的影响。结果表明,共聚物的热稳定性随着[Emim]PF6含量的增加显著的提高,所制备初生纤维表面光滑,结构致密。陈磊等人[35]采用咪唑类ILs实现了PAN/酶解木质素的增塑纺,制备了纤维直径为35μm的初生纤维。纤维表面光滑,径向结构均一,无皮芯结构,两相具有很好的相容性。相关专利[36]也报道了ILs作为PAN热稳定剂在熔融纺丝过程中起到了很好的稳定作用,其原理也是基于ILs的塑化特征,能够有效地减弱分子链间的偶极作用力。
Li等人[37]研究发现PAN的氰基与1-丁基-3-甲基咪唑氯盐([Bmim]Cl)咪唑环上的-CH基团之间会形成氢键作用,说明该IL具备了良好的增塑效果。相关研究表明PAN/[Bmim]Cl中PAN的含量对纺丝稳定性起到了关键作用,一般PAN的固含量为60wt.%[37]。Li等人[38]还研究了不同纺丝速度为原丝性能的影响,结果表明,当纺丝速度为500m/min时,原丝的性能最佳。Yu课题组[39]认为在增塑纺丝过程中噴丝孔孔径应当设定为0.3mm,并成功实现了PAN的增塑纺丝。Tian等人[40]研究了PAN/[Bmim]Cl体系在高温下的化学反应,研究结果表明高温下PAN分子链发生了化学反应,生成了含氧基团与共轭梯形结构。采用该方法所制备的PAN纤维的断面接近于圆形,不存在皮芯结构,其力学性能的各项指标已经接近或已达到工业化水平[38]。
3 讨论
目前,采用[Bmim]Cl作为PAN的增塑剂可实现增塑纺丝,所制备的纤维的结构可控,力学性能优良。这是由于[Bmim]Cl是一种水溶性的离子液体[41],可在后续的水浴牵伸阶段除去[42],而采用其他非水溶性ILs作为增塑剂存在复杂的后续萃取工艺。由于水溶性的[Bmim]Cl极易吸水[43],因此在实际制备原丝过程中,对环境的温湿度要求极高。
参考文献
[1] Banaie KA, Mirjalili M, Eslami-Farsani R. The study of the correlation between ascending and descending rates of the imposed specific stress and transposition of chemical reactions during PAN precursor fibers stabilization[J]. Polymer Degradation and Stability, 2018(156):234-244.
[2] Badii K, Church J S, Golkarnarenji G,et al.Chemical structure based prediction of PAN and oxidized PAN fiber density through a non-linear mathematical model [J]. Polymer Degradation and Stability,2016(131):53-61.
[3] Pham HH, Lim Y, Cho C, et al.Hydrodynamics of low temperature carbonization furnace for production of polyacrilonitrile (PAN)-based carbon fiber[J]. Chemical Engineering Research and Design, 2017(128):192-204.
[4] Li XY, Tian F, Gao XP, et al. WAXD/SAXS study and 2D fitting(SAXS) of the microstructural evolution of PAN-based carbon fibers during the pre-oxidation and carbonization process[J]. New Carbon Materials,2017,32(2):130-136.
[5] Yusof N, Ismail AF. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review[J]. Journal of Analytical and Applied Pyrolysis,2012(93):1-13.
[6] Newcomb B A Processing, structure, and properties of carbon fibers[J].Composites Part A: Applied Science and Manufacturing,2016,91(1):262-282.
[7] Morris E A, Weisenberger M C, Bradley SB, et al. McGrath. Synthesis, spinning, and properties of very high molecular weight poly(acrylonitrile-co-methyl acrylate) for high performance precursors for carbon fiber[J].Polymer,2014,55(25):6471-6482.
[8] Warner SB, Peebles LH, Uhlmann DR. Oxidative stabilization of acrylic fibres Part 1 Oxygen uptake and general model[J]. Journal of Materials Science,1979,14 (3):556-564.
[9] Bai YJ,Wang CG, Lun N, et al. microstructures of PAN precursor fibers[J]. Carbon, 2006, 44(9): 1773-1778.
[10] Liu J H, Xiao SJ, Shen Z G, Xu L, Zhang LB, Peng JH. Study on the oxidative stabilization of polyacrylonitrile fibers by microwave heating[J]. Polymer Degradation and Stability,2018(150):86-91.
[11] Katepalli H, Bikshapath M, Sharma CS,et al. Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications[J]. Chemical Engineering Journal,2011,171(3):1194-1200.
[12] Chen J C, Harrison I R. Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF)[J]. Carbon,2002(40):25-45.
[13] Park W, Ha PJ, Xanthos M. Ionic liquids as plasticizers/lubricants for polylactic acid[J]. Polymer engineering and science,2010,50(6):1105-1110.
[14] Paiva MC, Kotasthane P, Edie DD, et al. U V stabilization route for melt processible PAN-based carbon fibers[J]. Carbon, 2005, 43(5):1399-1409.
[15] Bajaj P, Sreekumar TV, Sen K. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers[J]. Polymer,2001,42(4):1707-1718.
[16] Bajaj P, Roopanwal AK. Thermal stabilization of acrylic precursors for the production of carbon fibers: an overview[J]. Journal of macromolecular science-reviews in macromolecular chemistry and physics,1997,C37(1):97-147.
[17] Godshall D, Rangarajana P, Bairda DG,et al. Incorporation of methyl acrylate in acrylonitrile based copolymers: effects on melting behavior[J]. Polymer,2003,44(15):4221-4228.
[18] Rangarajan P, Bhanu VA, Godshall, D, et al. Baird DG. Dynamic oscillatory shear properties of potentially melt processable high acrylonitrile terpolymers[J]. Polymer,2002,43(9):2699-2709.
[19] Atureliya SK, Bashir Z. Continuous plasticized melt extrusion of polyacrylonitrile homopolymer[J]. Polymer,1993,34(24):5116-5120.
[20] 陳蕾,杨明远,毛萍君.聚丙烯腈纤维的熔融纺丝[J].合成技术及应用,1998,13(3):36-41.
[21] Benedict S C, George SL Solon preparation of melt-processable acryionitrile/methacrylonitrile copolymers.US,5106925[P].1990.
[22] Mukundan T Bhanu VA, Wiles KB, et al. A photocrosslinkable melt processible acrylonitrile terpolymer as carbon fiber precursor[J].Polymer,2006,47(11):4163-4171.
[23] Han N, Zhang XX, Yu WY, et al. Effects of copolymerization temperatures on structure and properties of melt-spinnable acrylonitrile-methyl acrylate copolymers and fibers[J]. Macromol Res,2010,18(11):1060-1069.
[24] Rangarajan P, Yang J, Bhanu V, et al. Effect of comonomers on melt processability of polyacrylonitrile[J]. Journal of Applied Polymer Science,2001,85(1):69-83.
[25] Deng WJ, Lobovsky A, Iacono ST.,et al. Poly (acrylonitrile e co -1-vinylimidazole): A new melt processable carbon fiber precursor[J]. Polymer,2011,52(3):622-628.
[26] Bhanu VA, Rangarajan P, Wiles K,et al. Synthesis and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors[J]. Polymer,2002,43(18):4841-4850.
[27] 于萬勇,韩娜,王学晨,等.熔融加工丙烯腈-丙烯酸甲酯共聚物及纤维的研究[J].化工新型材料,37(10):63-65.
[28] 李慧慧.可熔融丙烯腈-N-乙烯基咪唑共聚物及纤维的制备与性能[D].天津工业大学,2014.
[29] Coxe C D Shaping Polyacrylonotroles: US,US2585444
[P].1952.
[30] Grove DA, Desa P, Abhiraman AS. Exploratory experiments in the conversion of plasticized melt spun PAN-based precursors to carbon fibers[J]. Carbon,1988,26(3):403-411.
[31] VaismanL, Larin B, Davidi I, et al. Wagner D. Processing and characterization of extruded drawn MWNT-PAN composite filaments. Composites Part A Applied Science and Manufacturing[J].Composites Part A Applied Scienoe & Manufacturi-ng,2007,38(5):1354-1362.
[32] Min BG, Kim CW. Sorption Properties of the Composite Fibers Made of PAN and Chitosan[J].Journal of Applied Polymer Scienee,2001,84(13):2505-2511.
[33] 万锕俊,唐志廉.PAN的增塑研究[J].高分子材料科学与工程,2002,18(5):1-4.
[34] 张兴祥,高希银,韩娜,等.含ILs的丙烯腈/丙烯酸甲酯共聚物及熔纺纤维的研究[J].化工新型材料,2010,39(11):
65-68.
[35] 陈磊,刘淑萍,余木火,等.含木质素的聚丙烯腈增塑熔融纺丝[J].材料科学与工程学报,2014,32(6):893-902.
[36] 张兴祥,韩娜,于万永,等.一种丙烯腈共聚物及其制备方法和用途.中国:CN200810053936.5[P].2008.
[37] Li X, Qin AW, Zhao XZ, Ma B.M., He C.J.. The plasticization mechanism of polyacrylonitrile/1-butyl-3-methylimidazolium chloride system[J].Polymer,2014(55):5773-5780.
[38] Li X, Li Z L, Dang X N, Luan D., Wang F., Chen H.Y., Wang C.T. Structural and thermal property changes of plasticized spinning polyacrylonitrile fibers under different spinning speeds[J].Journal of Applied Polymer Science, 2017,134(37):45267.
[39] Liu S P, Han K Q, Chen L, Zheng Y., Yu M. H., Li J. Q., Yang Z.. Influence of External Tension on the Structure and Properties of Melt-Spun PAN Precursor Fibers during Thermal Oxidation[J]. Macromolecular Materials and Engineering, 2015(300):1001-1009.
[40] Tian Y C, Han K Q, Zhang W H, Zhang J. J., Rong H. P., Wang D., Yan B., Liu S. P., Yu M. H.. Influence of residence time on the structure of polyacrylonitrile in ionic liquids during melt spinning process[J]. Materials Letters,2013(92):119-121.
[41] Yang QW, Xu D, Zhu YM, et al. Long-Chain Fatty Acid-Based Phosphonium Ionic Liquids with Strong Hydrogen-Bond Basicity and Good Lipophilicity: Synthesis, Characterization, and Application in Extraction[J].Sustainable Chemistry & Engineering,2015,3(2):309-316.
[42] Lu Y, Wang FX, Yang B,et al. Ionic liquid-assisted synthesis of ultralong nanowires of zinc octaethylporphyrin and their photoresponse[J].Journal of Materials Chemistry C,2015(3):3379-3383.
[43] Ren HF, Girisuta B, Zhou YG, et al. Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid[J].Carbohydrate Polymers,2015(117):569-576.