何远法 郭 勇* 迟淑艳** 谭北平,2 董晓慧,2 杨奇慧 刘泓宇 章 双
(1.广东海洋大学水产学院,湛江 524088;2.南海生物资源开发与利用协同创新中心,广州 510275)
鱼粉具有蛋白质含量高,必需氨基酸、长链ω-3脂肪酸、维生素和矿物质含量丰富等特点,一直以来都是水生动物的优质蛋白质源之一[1]。近几年来,有限的鱼粉资源和日益高涨的价格使得水生动物饲料中的鱼粉用量不得不减少[2-3]。替代鱼粉的常用植物蛋白质源,如豆粕、花生粕和棉籽粕等,往往因为必需氨基酸缺乏或含量很低,易引起饲料中氨基酸不平衡,导致养殖的水生动物不能高效利用其饲料蛋白质或氨基酸,进而影响机体相关代谢[4-5]。在鱼粉被常用的植物蛋白质源替代后,蛋氨酸成为影响鱼类正常生长的第一限制性氨基酸[6-7]。在动物体内,蛋氨酸以S-腺苷甲硫氨酸的形式将活性甲基传递给核酸和磷脂等,增强膜流动性和Na+-K+-ATP酶活性,减少胆汁酸在肝脏内聚积,加强其解毒作用[8]。蛋氨酸缺乏会导致鱼体生长和蛋白质效率降低[9-10],引起动物食欲减退、生长减缓或停滞、肾脏肿大或肝脏铁堆积,甚至造成肝坏死或纤维化[11],影响动物肌肉品质和其抗氧化能力[12]。虹鳟(Oncorhynchusmykiss)、大西洋鲑(Atlanticsalmon)、河鳟(Salvelinusnamaycush)等鲑科鱼类在饲喂蛋氨酸缺乏的饲料后还会罹患白内障[13]。适宜的饲料蛋氨酸水平能够提高斜带石斑鱼(Epinepheluscoioides)[14]、军曹鱼(Rachycentroncanadum)[7,15]、建鲤(Cyprinuscarpiovar. Jian)[8]、大鳞鲆(Psettamaxima)[16]、虹鳟[17]等水产动物的增重率、饲料利用率和免疫应答能力。
军曹鱼是一种近海网箱养殖系统最具潜力的海水经济鱼类,主产地为中国、巴拿马和越南[18-19],2016年的总产量约为4.4万 t[20]。目前,军曹鱼的养殖在一定程度上仍然依赖冰鲜鱼,限制了其大规模养殖。本试验通过在低鱼粉饲料中补充不同水平的蛋氨酸,探究其对军曹鱼生长性能、体成分及肌肉氨基酸组成的影响,为军曹鱼高效配合饲料的配制提供理论依据。
以红鱼粉、去皮豆粕、玉米蛋白粉、小麦谷朊粉和晶体氨基酸[必需氨基酸(EAA)和非必需氨基酸(NEAA)]为主要蛋白质源,豆油、鱼油和大豆磷脂为脂肪源,配制鱼粉含量为20%的低鱼粉饲料。在低鱼粉饲料中分别添加0、0.20%、0.40%、0.80%、1.00%和1.20%的DL-蛋氨酸,通过调整饲料中甘氨酸的含量,配制7种等氮等脂饲料(表1)。饲料原料经粉碎后按配方称重,逐级混合均匀后制粒成Φ2.5 mm×5.0 mm和Φ4.0 mm×5.0 mm的2种浮性膨化饲料,晾干后于-20 ℃冰箱中储存备用。试验饲料的氨基酸组成见表2。
表1 试验饲料组成及营养水平(干物质基础)
续表1项目Items蛋氨酸水平Methioninelevel/%0.720.901.001.241.411.631.86粗脂肪Etherextract11.4111.1811.3411.0611.2511.2211.48粗灰分Ash7.337.517.557.517.527.527.50
1)必需氨基酸为每千克饲料提供 Essential amino acids provided the following per kg of diets:L-赖氨酸L-lysine 3.20 g,L-组氨酸L-histidine 3.81 g,亮氨酸 leucine 10.41 g,L-异亮氨酸L-isoleucine 3.03 g,L-苯丙氨酸L-phenylalanine 8.54 g,L-缬氨酸L-valine 8.57 g。
2)非必需氨基酸中L-天冬氨酸∶甘氨酸=1∶1L-aspartic acid∶glycine=1∶1 in nonessential amino acids。
3)维生素预混料为每千克饲料提供 The vitamin premix provided the following per kg of diets:VB125 mg,VB245 mg,VB360 mg,VB5200 mg,VB620 mg,VB71.20 mg,VB120.1 mg,肌醇 inositol 800 mg,叶酸 folic acid 20 mg,VA 32 mg,VE 120 mg,VD35 mg,VK310 mg。
4)矿物质预混料为每千克饲料提供 The mineral premix provided the following per kg of diets:NaF 2 mg,KI 0.8 mg,CoCl250 mg,CuSO410 mg, FeSO480 mg,ZnSO450 mg,MnSO460 mg,MgSO41 200 mg,NaCl 100 mg,沸石粉 zeolite powder 1 447.2 mg。
表2 试验饲料中氨基酸组成(干物质基础)
色氨酸没有检测Try was not analyzed。
养殖试验在湛江市南三岛附近海域的渔排上进行。试验用军曹鱼苗购自海南省文昌市育苗厂。正式试验开始前将试验鱼置于网箱(6 m×3 m×2 m)中暂养1周,然后挑选体格健壮、规格均一的初始体重为(9.79±0.04) g的军曹鱼幼鱼,随机分成7组,每组随机分配3个浮式海水网箱(1.0 m×1.0 m×2.0 m),每个网箱放鱼40尾。每天人工投喂2次(06:00和18:00),循环投喂至表观饱食状态(以大部分鱼不再游到水层表面摄食为准)。养殖周期为16周,水温28~33 ℃,盐度27‰~30‰,溶氧浓度>6 mg/L。
在养殖试验结束后,饥饿24 h,用丁香酚(1∶10 000)麻醉后计数、称重。每个网箱随机抽取3尾鱼,-20 ℃冰箱保存,备测全鱼常规养分含量;每个网箱再随机抽取4尾鱼,解剖分离得到内脏和肝脏,并称量其湿重,用于计算形体指标;取背肌于冻存管并迅速放入液氮保存,后置于-80 ℃冷冻保存,用于肌肉氨基酸组成测定。
饲料原料、试验饲料以及鱼体常规养分含量测定参照AOAC(1995)[21]的方法。将饲料原料、试验饲料及鱼体样品均在105 ℃烘至恒重,获得水分含量;凯氏定氮法测定粗蛋白质含量;索氏抽提法测定粗脂肪含量;低温碳化,550 ℃灼烧5 h后测定粗灰分含量。
试验样品氨基酸组成使用全自动氨基酸分析仪(A300,membraPure,德国)检测。饲料和鱼体肌肉样品经冷冻干燥后称取50~200 mg(准确至0.1 mg)于10 mL顶空进样瓶中,加入10 mL 6 mol/L的盐酸,真空干燥10 min,再于氮吹仪下充氮气用铝箔加盖密封。将顶空进样瓶放在105 ℃恒温干燥箱中水解24 h,超纯水定容至50 mL,吸取定容后的样品1 mL于10 mL烧杯中,置真空干燥箱中脱酸(60 ℃)。加入1 mL乙酸钠缓冲液,混匀,经0.22 μm滤膜过滤至上样瓶中,上机检测。
增重率(weight gain rate,WGR,%)=100×(末均重-初均重)/初均重;特定生长率(specific growth rate,SGR,%/d)=100×(ln末均重-ln初均重)/饲养天数;蛋白质效率(protein efficiency ratio,PER)=100×(终末体重-初始体重)/(饲料摄食量×饲料粗蛋白质含量);饲料系数(feed conversion ratio,FCR)=摄食饲料干重/(终末体重-初始体重);成活率(survival rate,SR,%)=100×试验结束时鱼尾数/试验开始时鱼尾数;肥满度(condition factor,CF,%)=100×体重(g)/体长(cm)3;肝体指数(hepatosomatic index,HSI,%)=100×肝脏重/体重;脏体指数(viscerosomatic index,VSI,%)=100×内脏重/体重。
试验数据采用SPSS 17.0统计软件对数据进行单因素方差分析(one-way ANOVA),如有显著性差异(P<0.05),则进行Duncan氏法多重比较。试验数据用“平均值±标准误”表示。
由表3可知,各组军曹鱼的SR介于77.15%~92.86%,且0.90%和1.00%组的SR显著高于0.72%组(P<0.05)。随着饲料中蛋氨酸水平的升高,军曹鱼的WGR、SGR、PER均呈先升高后降低的变化趋势,在1.00%组达到最大值,显著高于其余各组(P<0.05)。1.00%组军曹鱼的FCR最低,与0.90%和1.24%组差异不显著(P>0.05),显著低于其余各组(P<0.05)。
表3 饲料蛋氨酸水平对军曹鱼生长性能的影响
续表3项目Items蛋氨酸水平Methioninelevel/%0.720.901.001.241.411.631.86特定生长率SGR/(%/d)4.07±0.02b4.56±0.07e4.67±0.01e4.38±0.02f4.18±0.01c4.16±0.03bc3.85±0.01a蛋白质效率PER1.48±0.02b2.00±0.08d2.14±0.01e1.76±0.03c1.57±0.01b1.55±0.02b1.29±0.01a饲料系数FCR1.46±0.02cd1.09±0.04ab1.02±0.00a1.22±0.02b1.37±0.01c1.38±0.02c1.56±0.11d成活率SR/%79.05±0.95a92.86±1.43c87.62±1.15bc81.43±1.43ab82.86±1.65ab82.86±1.65ab77.15±2.86a
同行数据肩标不同字母表示差异显著(P<0.05),相同字母或无字母表示差异不显著(P>0.05)。下表同。
Values in the same row with different letter superscripts were significantly different (P<0.05), while with the same or no letter superscripts were not significantly different (P>0.05). The same as below.
将各组军曹鱼的WGR(y)与饲料蛋氨酸水平(x)进行回归分析,发现二者存在二次回归关系(图1),回归方程为y=-734.1x2+1 644.2x+200.89(R2=0.627)。当饲料蛋氨酸水平为1.12%时,军曹鱼的WGR最大,由7组饲料蛋氨酸水平估计军曹鱼饲料蛋氨酸水平的95%置信区间为0.87%~1.63%。
图1 饲料蛋氨酸水平与军曹鱼增重率的关系
由表4可知,1.41%组军曹鱼的CF显著低于0.72%组(P<0.05),与其余各组差异不显著(P>0.05)。饲料蛋氨酸水平对军曹鱼的VSI、HSI均无显著影响(P>0.05)。
由表5可知,各组全鱼水分含量无显著差异(P>0.05);0.72%组全鱼粗蛋白质含量显著低于其余各组(P<0.05);0.90%组全鱼粗脂肪含量最高,达到30.81%,除与0.72%和1.00%组差异不显著(P>0.05)外,显著高于其余各组(P<0.05);1.24%组全鱼粗灰分含量显著高于0.72%和0.90%组(P<0.05)。
随饲料蛋氨酸水平的升高,军曹鱼肌肉中苯丙氨酸、赖氨酸、亮氨酸、丙氨酸、蛋氨酸以及EAA和总氨基酸(TAA)含量均无显著变化(P>0.05);1.00%组军曹鱼肌肉中苏氨酸、缬氨酸、异亮氨酸、组氨酸含量显著高于1.63%组(P<0.05)。
表4 饲料蛋氨酸水平对军曹鱼形体指标的影响
据报道,全鱼粗蛋白质含量随饲料蛋氨酸水平的升高呈先升高后降低的变化趋势[6,40,45]。本试验中,饲喂蛋氨酸缺乏饲料的军曹鱼全鱼粗蛋白质含量较饲喂其他饲料的军曹鱼显著降低。造成这种差异的原因可能是,在蛋氨酸缺乏的情况下,饲料中氨基酸模式失衡,限制了军曹鱼对其他氨基酸的利用,加重了多余氨基酸的脱氨基作用,最终导致了体蛋白质合成受限,而补充蛋氨酸,增强了军曹鱼对其他氨基酸的利用,促进了体蛋白质的合成[46]。Luo等[14]结果表明,随着饲料蛋氨酸升高到适宜水平,点带石斑鱼全鱼粗蛋白质含量增加,然后基本保持稳定。另外,该试验中饲喂低蛋氨酸水平饲料的军曹鱼具有较高的全鱼粗脂肪含量。这与在团头鲂[24]、印度鲶鱼[40]、罗非鱼[47]上所得结果一致,表明摄食蛋氨酸水平低的饲料鱼体可能利用蛋白质而不是脂肪作为能源来降低长链脂酰辅酶A从胞浆转运到线粒体内进行脂肪酸的β-氧化[24,48]。然而,另有研究表明,随着饲料蛋氨酸水平的升高,全鱼粗脂肪含量增加[14,23,25],与上述结果存在差异,其原因有待进一步研究。
表5 饲料蛋氨酸水平对军曹鱼全鱼体成分的影响(干物质基础)
表6 饲料蛋氨酸水平对军曹鱼肌肉氨基酸组成的影响(干物质基础)
水产动物对蛋白质的积累是通过饲料氨基酸的合成来实现的,不同饲料氨基酸模式将影响鱼类的生长、体蛋白质结合态氨基酸的组成以及蛋白质的合成[27,49]。据报道,黄颡鱼肌肉EAA含量不随饲料蛋氨酸水平的升高而变化[10];牛蛙[Rana(Lithobates)catesbeiana]肌肉EAA、NEAA和TAA含量随饲料蛋氨酸水平的升高不发生任何改变[50];博氏巨鲶(Pangasiusbocourti)全鱼EAA和TAA含量不受饲料蛋氨酸水平的显著影响[51]。本试验中,饲料蛋氨酸水平对军曹鱼肌肉中EAA和TAA含量均无显著影响,这与上述研究结果一致,但与黑鲷[22]、大黄鱼[27]、胭脂鱼(Myxocyprinusasiaticus)[52]的研究结果存在差异,表现为饲料蛋氨酸缺乏或不足降低了其肌肉中EAA含量,并且抑制其蛋白质的合成。有意思的是,饲料蛋氨酸水平对军曹鱼肌肉中苏氨酸、缬氨酸、异亮氨酸、组氨酸和精氨酸的含量有显著影响,这与早期的研究结果[14,52]类似,表明一种氨基酸的摄入能够影响其他氨基酸含量的改变[53],饲料中某一种EAA的限制可能会通过增加其他EAA和NEAA的氧化来达到饲料中氨基酸的平衡[22]。
① 低鱼粉饲料中补充蛋氨酸可提高军曹鱼的生长性能和体蛋白质含量。
② 以WGR作为评价指标,经二次回归分析可知,军曹鱼对饲料中蛋氨酸需要量为1.12%(占饲料蛋白质的2.43%)。
[1] OLSEN R L,HASAN M R.A limited supply of fishmeal:impact on future increases in global aquaculture production[J].Trends in Food Science & Technology,2012,27(2):120-128.
[2] LU F,HAGA Y,SATOH S.Effects of replacing fish meal with rendered animal protein and plant protein sources on growth response,biological indices,and amino acid availability for rainbow troutOncorhynchusmykiss[J].Fisheries Science,2015,81(1):95-105.
[3] SHAN L L,LI X Q,ZHENG X M,et al.Effects of feed processing and forms of dietary methionine on growth andIGF-1 expression in Jian carp[J].Aquaculture Research,2015,48(1):56-67.
[4] KEREMAH R I,ALFREDOCKIYA J F.Effects of dietary protein level on growth and body composition of mudfish,Heterobranchuslongifilisfingerlings[J].African Journal of Business Management,2013,12(9):971-975.
[5] VAN DER INGH T S G A M,OLLI J J,KROGDAHL Å.Alcohol-soluble components in soybeans cause morphological changes in the distal intestine of Atlantic salmon,SalmonsalarL[J].Journal of Fish Diseases,2010,19(1):47-53.
[6] AHMED I,KHAN M A,JAFRI A K.Dietary methionine requirement of fingerling Indian major carp,Cirrhinusmrigala(Hamilton)[J].Aquaculture International,2003,11(5):449-462.
[7] ZHOU Q C,WU Z H,TAN B P,et al.Optimal dietary methionine requirement for juvenile cobia (Rachycentroncanadum)[J].Aquaculture,2006,258(1/2/3/4):551-557.
[8] TANG L,WANG G X,JIANG J,et al.Effect of methionine on intestinal enzymes activities,microflora and humoral immune of juvenile Jian carp (Cyprinuscarpiovar.Jian)[J].Aquaculture Nutrition,2009,15(5):477-483.
[9] WANG Y Y,CHE J F,TANG B B,et al.Dietary methionine requirement of juvenilePseudobagrusussuriensis[J].Aquaculture Nutrition,2016,22(6):1293-1300.
[10] ELMADA C Z,HUANG W,JIN M,et al.The effect of dietary methionine on growth,antioxidant capacity,innate immune response and disease resistance of juvenile yellow catfish (Pelteobagrusfulvidraco)[J].Aquaculture Nutrition,2016,22(6):1163-1173.
[11] 王蕾蕾,邵庆均.饲料中添加蛋氨酸对鱼类生长的影响[J].水生态学杂志,2007,27(1):108-110.
[12] PÉREZ-JIMÉNEZ A,PERES H,CRUZ R V,et al.The effect of dietary methionine and white tea on oxidative status of gilthead sea bream (Sparusaurata)[J].British Journal of Nutrition,2012,108(7):1202-1209.
[13] POSTON H A,RIIS R C,RUMSEY G L,et al.The effect of supplemental dietary amino acids,minerals and vitamins on salmonids fed cataractogenic diets[J].Cornell Veterinarian,1977,67(4):472-509.
[14] LUO Z,LIU Y J,MAI K S,et al.DietaryL-methionine requirement of juvenile grouperEpinepheluscoioidesat a constant dietary cystine level[J].Aquaculture,2005,249(1/2/3/4):409-418.
[15] WANG Z,MAI K S,XU W,et al.Dietary methionine level influences growth and lipid metabolism via GCN2 pathway in cobia (Rachycentroncanadum)[J].Aquaculture,2016,454:148-156.
[16] MA R,HOU H P,MAI K S,et al.Comparative study on the effects ofL-methionine or 2-hydroxy-4-(methylthio) butanoic acid as dietary methionine source on growth performance and anti-oxidative responses of turbot (Psettamaxima)[J].Aquaculture,2013,412/413:136-143.
[17] ROLLAND M,DALSGAARD J,HOLM J,et al.Dietary methionine level affects growth performance and hepatic gene expression of GH-IGF system and protein turnover regulators in rainbow trout (Oncorhynchusmykiss) fed plant protein-based diets[J].Comparative Biochemistry & Physiology Part B:Biochemistry & Molecular Biology,2015,181:33-41.
[18] CHOU R L,SU M S,CHEN H Y.Optimal dietary protein and lipid levels for juvenile cobia (Rachycentroncanadum)[J].Aquaculture,2003,193(1/2):81-89.
[19] ZHOU Q C,TAN B P,MAI K S,et al.Apparent digestibility of selected feed ingredients for juvenile cobiaRachycentroncanadum[J].Aquaculture,2004,241(1/2/3/4):441-451.
[20] 农业部渔业局.中国渔业统计年鉴2016[M].北京:中国农业出版社,2016.
[21] AOAC.Official methods of analysis[S].Arlington,VA:Association of Official Analytical Chemists,1995.
[22] ZHOU F,XIAO J X,HUA Y,et al.DietaryL-methionine requirement of juvenile black sea bream (Sparusmacrocephalus) at a constant dietary cystine level[J].Aquaculture Nutrition,2011,17(5):469-481.
[23] AHMED I.Dietary amino acidL-methionine requirement of fingerling Indian catfish,Heteropneustesfossilis(Bloch-1974) estimated by growth and haemato-biochemical parameters[J].Fish Physiology and Biochemistry,2012,38(4):1195-1209.
[24] LIAO Y J,REN M C,LIU B,et al.Dietary methionine requirement of juvenile blunt snout bream (Megalobramaamblycephala) at a constant dietary cystine level[J].Aquaculture Nutrition,2014,20(6):741-752.
[25] RUCHIMAT T,MASUMOTO T,HOSOKAWA H,et al.Quantitative methionine requirement of yellowtail (Seriolaquinqueradiata)[J].Aquaculture,1997,150(1/2):113-122.
[26] HIDALGO F,ALLIOT E,THEBAULT H.Methionine-and cystine-supplemented diets for juvenile sea bass (Dicentrarchuslabrax)[J].Aquaculture,1987,64(3):209-217.
[27] MAI K S,WAN J L,AI Q H,et al.Dietary methionine requirement of large yellow croaker,PseudosciaenacroceaR[J].Aquaculture,2006,253(1/2/3/4):564-572.
[28] TWIBELL R G,WILSON K A,BROWN P B.Dietary sulfur amino acid requirement of juvenile yellow perch fed the maximum cystine replacement value for methionine[J].The Journal of Nutrition,2000,130(3):612-616.
[29] KIM K,KAYES T B,AMUNDSON C H.Requirement of sulfur amino acids and utilization ofD-methionine by rainbow trout (Oncorhynchusmykiss)[J].Aquaculture,1992,101(1/2):95-103.
[30] 贾鹏,薛敏,朱选,等.饲料蛋氨酸水平对异育银鲫幼鱼生长性能影响的研究[J].水生生物学报,2013,37(2):217-226.
[31] LI P,BURR G S,WEN Q,et al.Dietary sufficiency of sulfur amino acid compounds influences plasma ascorbic acid concentrations and liver peroxidation of juvenile hybrid striped bass (Moronechrysops×M.saxatilis)[J].Aquaculture,2009,287(3/4):414-418.
[32] WILSON R P.Amino acids and proteins[M]//HALVER J E,HARDY R W.Fish nutrition.3rd ed.San Diego,CA:Academic Press,2002:143-179.
[34] MURTHY H S,VARGHESE T J.Total sulphur amino acid requirement of the Indian major carp,Labeorohita(Hamilton)[J].Aquaculture Nutrition,1998,4(1):61-65.
[35] SHUSAKU T,SHIMENO S,HOSOKAWA H,et al.Effect of lysine and methionine supplementation to a soy protein concentrate diet for red sea breamPagrusmajor[J].Fisheries Science,2001,67(6):1088-1096.
[36] SVEIER H,NORDÅS H,BER G E,et al.Dietary inclusion of crystallineD-andL-methionine:effects on growth,feed and protein utilization,and digestibility in small and large Atlantic salmon (SalmonsalarL.)[J].Aquaculture Nutrition,2001,7(3):169-181.
[37] NGUYEN T N,DAVIS D A.Re-evaluation of total sulphur amino acid requirement and determination of replacement value of cystine for methionine in semi-purified diets of juvenile Nile tilapia,Oreochromisniloticus[J].Aquaculture Nutrition,2009,15(3):247-253.
[38] HARDING D E,ALLEN A O,Jr,WILSON R P.Sulfur amino acid requirement of channel catfish:L-methionine andL-cystine[J].Journal of Nutrition,1977,107(11):2031-2035.
[39] GOFF J B,DMIII G.Evaluation of different sulfur amino acid compounds in the diet for red drum,Sciaenopsocellatus,and sparing value of cystine for methionine[J].Aquaculture,2004,241(1/2/3/4):465-477.
[40] FHRHAT,KHAN M A.Total sulfur amino acid requirement and cystine replacement value for fingerling stinging catfish,Heteropneustesfossilis(Bloch)[J].Aquaculture,2014,426-427:270-281.
[41] RODEHUTSCORD M,JACOBS S M,PACK M,et al.Response of rainbow trout (Oncorhynchusmykiss) growing from 50 to 150 g to supplements ofDL-methionine in a semipurified diet containing low or high levels of cystine[J].Journal of Nutrition,1995,125(4):964-969.
[42] NRC.Nutrient requirements of fish and shrimp[S].Washington,D.C.:National Academic Press,2011.
[43] WALTON M J,COWEY C B,ADRON J W.Methionine metabolism in rainbow trout fed diets of differing methionine and cystine content[J].The Journal of Nutrition,1982,112(8):1525-1535.
[44] ESPE M,HEVRØY E M,LIASET B,et al.Methionine intake affect hepatic sulphur metabolism in Atlantic salmon,Salmosalar[J].Aquaculture,2008,274(1):132-141.
[45] YAN Q,XIE S,ZHU X,et al.Dietary methionine requirement for juvenile rockfish,Sebastesschlegeli[J].Aquaculture Nutrition,2007,13(3):163-169.
[46] 朱杰,蒋广震,徐维娜,等.日本沼虾的蛋氨酸需求量[J].经济动物学报,2014,18(3):151-158.
[47] EL-WAHAB A A,AZIZA A,MAHGOUB H,et al.Effects of dietary methionine levels and sources on performance,blood lipid profile and histopathology in Nile tilapia (Oreochromisniloticus)[J].International Journal of Fisheries and Aquatic Studies,2016,4(4):89-98.
[48] WALTON M J,COWEY C B,ADRON J W.The effect of dietary lysine levels on growth and metabolism of rainbow trout (Salmogairdneri)[J].British Journal of Nutrition,1984,52(1):115-122.
[49] ALAM M S,TESHIMA S,ISHIKAWA M,et al.Methionine requirement of juvenile Japanese flounderParalichthysolivaceusestimated by the oxidation of radioactive methionine[J].Aquaculture Nutrition,2001,7(3):201-209.
[50] ZHANG C X,FENG W,WANG L,et al.Optimal dietary methionine requirement of bullfrog Rana (Lithobates) catesbeiana[J].Aquaculture,2016,464:576-581.
[51] YUANGSOI B,WONGMANEEPRATEEP S,SANGSUE D.The optimal dietaryDL-methionine on growth performance,body composition and amino acids profile of Pangasius catfish (Pangasiusbocourti)[J].Aquaculture,Aquarium,Conservation & Legislation-Internationa,2016,9(2):369-378.
[52] CHU Z J,GONG Y,LIN Y C,et al.Optimal dietary methionine requirement of juvenile Chinese sucker,Myxocyprinusasiaticus[J].Aquaculture Nutrition,2014,20(3):253-264.
[53] COLOSO R M,MURILLO-GURREA D P,BORLONGAN I G,et al.Sulphur amino acid requirement of juvenile Asian sea bassLatescalcarifer[J].Journal of Applied Ichthyology,2010,15(2):54-58.