基坑工程的整体稳定可靠度及模糊可靠度分析

2018-03-06 02:56胡春生陈新恒
建筑施工 2018年10期
关键词:土钉圆心基坑

胡春生 陈新恒 张 骥

中建七局(上海)有限公司 上海 201812

近年来,随着我国城市化建设进程的发展,城市用地需求量越来越大。但是,由于地上空间资源有限且人口密度越来越大,故出现了向地下和高空谋求发展空间的趋势。作为土木建筑结构施工过程中具有举足轻重地位的基坑开挖工程,一旦在施工过程中出现基坑失稳破坏,那么其无论给社会还是经济所带来的损失都是无法估计的。所以,在施工过程中应当尽量避免发生基坑失稳[1-4]。

此外,结构可靠度理论是考虑到在工程实际结构设计中,有很多不确定的因素而产生和发展的。不确定性是指出现或者发生的结果是不确定的,并且需要用不确定性理论和措施进行推断、分析。一般把结构设计中影响结构可靠性的不确定性分为模糊性、随机性以及不完善性。因此对于岩土体稳定性的分析,应当综合考虑其随机性和模糊性的特点[5]。

针对基坑的整体稳定性研究,常用的方法有瑞典圆弧法、简单条分法等。

本文利用一次二阶矩法中的中心点法和MATLAB编写相应的分析程序并利用模糊可靠度理论对某土钉墙进行整体稳定性分析。

1 基坑整体稳定可靠度分析

1.1 整体稳定性功能函数的建立

基坑整体稳定性分析实际上就是对支护结构的直立土坡进行稳定性分析,通过分析确定支护结构的嵌固深度。

基坑整体稳定性的计算方法主要是采用圆弧滑动面简单条分法,按总应力法计算。

取单位厚墙进行分析,基坑的支护结构整体稳定性安全系数应满足[6]:

式中:ci——第i土条底面上的黏聚力,kPa;

φi——第i土条底面上的摩擦角,°;

li——第i土条底面面积,m2;

bi——第i土条的宽度,m;

Wi——第i土条重力,按上覆土层的饱和容积密度计算;

θi——第i土条底面倾角,°;

qo——地表均布荷载。需要指出的是,在计算KSK时,应当计算最危险滑动面的稳定安全系数。

1.2 中心点法

在求解结构可靠度时,常常把非线性功能函数按Taylor级数展开并取一次项,而后按照可靠指标的定义建立求解方程,这样就产生了求解可靠指标的一次二阶矩法。一次二阶矩法主要分为中心点法和设计验算点法[7]。

假设结构的功能函数具有一般形式,如下式:

其中,基本变量X=(X1,X2, …,Xn)T为相互独立的正态变量,其均值为μx=(μx1,μx2, …,μxn)T,标准差为σx=(σx1,σx2, …,σxn)T。

将功能函数Z在均值点(或者中心点)处展开为Taylor级数并保留一次项,可得:

计算均值与方差时,应当先确定c、φ的变异系数υc和υφ,设ξ是变异系数的增长率,则其计算式如下所示[8]:

则功能函数Z的均值和方差可表示为:

则有:

式中:β——结构的可靠性指标。

相对应的结构的失效概率为:

2 基坑整体稳定模糊可靠度分析

结构可靠性定义为在规定条件和时间下结构完成预定功能的能力,大部分情况下判断结构能否完成预定功能有一个确定的界限。

但是在工程设计和分析的过程中,还经常会遇到结构失效、界限不明确或是失效准则不清晰的情况,针对这些情况,在可靠度分析中就要考虑结构失效的程度。模糊可靠度就是结合模糊数学专门讨论相关的可靠度分析和计算问题。

计算模糊可靠度失效概率首先需要确定其功能函数,这里的功能函数完全可以使用可靠度里的功能函数。其次需要确定功能函数的概率密度函数。一般认为功能函数满足正态分布,假定都是相互独立的随机变量,因此功能函数的概率密度函数为:

其中,μz和σz分别为Z的均值和标准差,设R为结构抗力,S为荷载效应,其均值分别为μR和μS,则μz和σz可分别按下述公式计算[9]:

对于模糊可靠度的计算,还需要运用到隶属函数,其一般有3种分布形式,分别为矩形分布或半矩形分布、梯形分布或半梯形分布以及岭形分布。这里选用岭形分布中的偏小型分布函数[10],形式为:

式中的a1、a2即为隶属函数上下限,根据具体问题的研究以及结合工程实际和文献[11]选定为a1=0.8、a2=1.1。

确定好隶属函数后,则模糊可靠度的失效概率为:

3 实例分析

根据文献[12]中的实际工程,某基坑采用土钉墙支护结构,边坡高度为6 m,黏性土层,重度γ=18.6 kN/m3,固结不排水剪内摩擦角为12°,固结不排水剪黏聚力标准值C=12.7 kPa。土钉墙坡面和水平面的夹角为55°。

已知土钉墙的坡面是55°,按文献[13]可求得α1(∠OAB)=28.7°,α2(∠OBD)=39°。通过确定α1、α2可确定最危险滑弧面圆心的范围。

在上面的基础上,利用MATLAB按文献[14]所述方法来编程搜索最危险圆心,通过运算得出最危险圆弧圆心位置。此处的所对应的滑动圆弧的圆心角为68°,半径为8.35 m,一共划分7个竖直土条,从坡脚开始的6个土条的宽度b均为1.0 m,第7个土条的宽度为1.15 m(图1)。

依据上图可求出每个土条的竖向中心线至圆弧圆心O点的距离Xi,同时可求得每个土条滑动圆弧面中点切线与水平线的夹角θi。

图1 土钉墙计算简图

通过每个土条的竖向中心线DC的高度hi可计算出土条的重力Wi,可求得边坡稳定计算结果(表1)。

表1 边坡稳定计算结果

在求得最危险滑弧面所对应圆心的基础上,以步长80 mm在最危险圆心的两侧各取3个圆心,分别为O1、O2、…、O6。

计算出以上6个圆心的安全系数、可靠度以及模糊可靠度(表2)。

表2 各圆心计算结果

由于基坑失稳所对应的概率一般以10-3~10-2为参考,对比分析表2可知,利用模糊可靠度理论所求得的失效概率较之于利用中心点法所求得的失效概率偏大,但2种方法所求得的基坑都是安全的,这与工程实际情况是相符合的。

4 结语

通过上述研究及对实例计算结果的分析,不难看出:

1)仅仅用安全系数法计算基坑工程的整体稳定性有时不能满足工程实际的需求,通过可靠度以及模糊可靠度的计算分析,可以更加准确地评估基坑支护工程的稳定性。

2)通过计算可以发现,可靠度的失效概率普遍比模糊可靠度的失效概率小,说明模糊可靠度考虑了更多条件的模糊性,而可靠度在计算的时候往往忽略了条件的模糊性,所以相对来说,模糊可靠度算出来的结果更加准确。

3)上述算例算出的结果均在规范规定的范围之内,可靠度的失效概率在0.01%~0.10%之间,满足条件,说明上述算例的稳定性是满足要求的。

猜你喜欢
土钉圆心基坑
土钉喷锚在不同土层的支护应用及效果分析
微型钢管桩在基坑支护工程中的应用
复合土钉墙支护技术在建筑深基坑工程中的应用探讨
全套管全回转咬合桩在基坑支护中的技术应用
基坑开挖及加固方法研究
复合土钉墙优化设计的探讨
基坑开挖对邻近已开挖基坑的影响分析
以圆周上一点为圆心作圆的图的性质及应用
不同支护方案在基坑支护设计中的对比分析
参考答案