小议高考视角下如何提高学生的数学思维能力

2018-02-26 07:07熊萍
关键词:高考提高思维能力

熊萍

【摘要】 教育思想的深入发展,使得高中数学的教学难度和教学目标都发生了改变。提高学生的数学逻辑思维成为了教学工作当中非常重要的任务,为了更好地提升学生思维能力,教师应当积极进行教学研究,以更好的方式和理念开展教学工作。本文对高考视角下如何提高学生思维能力进行简要分析。

【关键词】 高考 提高 思维能力

【中图分类号】 G633.6 【文献标识码】 A 【文章编号】 1992-7711(2018)01-137-01

0

传统的教学模式当中,教师的教学模式相对死板,教学策略也大同小异,十分的单一。这种教学模式下无法有效的为学生提供更好的逻辑思维锻炼机会和发展空间,导致学生的思维能力无法得到快速提升,在解答数学题目时没有足够的灵活性。因此,教师必须要结合高考真实案例,不断的帮助学生、引导学生,使得学生的数学思维能够得到更大的提升。

一、转变解题思路

在高中数学的教学工作中,教师需要加强培养学生的思维能力,从而更好的提高教学效果。为了达此教学目标,便需要在题型教学中改变解题思路,让学生能够更好地掌握数学题型当中的本质内容以及问题的涵义。教学中避免使用机械式的记忆来开展教学,导致学生只能对某一种或者几种类型题目进行解答,一旦题目发生变化将很难再继续攻破。为能更好地契合高考发展要求,教师需要将高考题型的变化引入到课堂教学中,以强化学生的数学解题思维,来从高考的角度出发探寻解题变化新思路。在具体的教学工作当中,教师应当引导学生发散自身思维,转变自身解题思路从而更好地达到解题的目的。

例如:高考数学试卷当中的题目“正四棱柱ABCD-A1B1C1D1當中,,底面边长为3,边BD1与底面所形成的夹角的正切值为2/3,那么这个正四棱柱的高度是多少?”通过对这道高考真题进行分析我们可以发现,这道题目的考察点当中,包含了学生的几何抽象能力,如果学生的空间想象能力较弱,或者没有能力进行数形结合,那么学生便无法进行题目的解答,无法发现题目所要考察的知识点的本质。因此教师在进行讲解时,要以数形结合做为出发点,引导学生构建出清晰的几何框架,结合点、线、面的知识,变化解题思维,从而获得新的解题思路,学生通过这种学习方式,能快速的找到未知条件,提高解题速度。

二、利用问题引导

教学活动开设期间,最为重要的一项内容是让学生对知识产生疑问,当学生产生疑问以后才能针对具体问题进行解决,以获得教师更多的引导与帮助,从而能在学习上有所突破。教学活动开设期间,教师将教学中学生反应出来的问题做好整理和归纳,并预设出一堂课进行专项讲解,以为学生建立问题情境教学环境,让学生能在此环境中大胆的进行提问,并提出学习中存有的困惑,从而教师能针对学生提出的问题开展针对性讲解。另外,教师可利用问题的提出来激发学生对知识的欲望,以提高其学习动力,使学生能主动的投入到探索问题和知识点的具体过程中,通过系统性的总结,实现数学思维的转变与发展,获得更多的解题思路,从而提高自身能力。在课堂教学当中,教师可以针对实际教学安排,选择高考真题,并将其作为典型案例融入到课堂教学当中,让学生了解高考试卷的具体的考核内容,进而感受高考,对比不足,激发学习动力。

例如:在学习《几何模型》相关内容时,教师可以选择高考真题做为典型案例进行讲解:一个公司的通勤车每天早晨七点整发出一班,八点整发出一班,八点半发出一班,小明如果在七点五十到八点半之间到达了车站,并且到达时间随机,那么他在十分钟之内便可以上车的概率是多少?时间是性质便是连续的,是一条单行线。教师可以对学生加以引导,让学生尝试着去画数轴,将数形结合的方法利用起来,更好的解决实际问题。教师还可以让学生拆分时间段进行分析,最后再将分析结果相加来完成题目的解答。解决数学问题的方法非常多,教师应当对学生加以鼓励,让学生积极的进行思考和假设,并利用具有针对性的问题去引导学生,促进学生数学思维能力得到快速发展和提高。

三、培养学生的数学敏锐度

高中数学教学中,教师应重视培养学生的教学敏锐度,让学生对知识有新的认知,当看到新的知识点以后能快速反应出是否学习过该知识或者该知识学习过程中的难点和重点分别是什么,只有这样学生才能在分条缕析中理解知识,进而以提升学生的逻辑思维能力。教学中教师应从高考的真题出发,通过真题的讲解让学生意识到平时学习中哪些问题应被注意到,使得学生能在知识复习和学习中的敏锐度增大,解决问题的能力也增强,不在以应试为学习的主要目的,而是以查缺补漏为学习的前提。为此,教学活动中要按照教学大纲的要求给学生传授相关的知识要点,并根据学生的思维能力为学生搭建数学知识框架体系。知识框架系统构建期间,需要结合高考数学真题来锻炼学生的各项综合能力,以提升学生的应试思维能力,使学生的发散性思维得到激发,提升学生的学习敏锐度。

例如,《函数及其表示》这课内容教学活动开设期间,学生可以从函数的概念与历程出发,用以领悟函数的本质思想。学生如果能从本质上理解函数,就能结合函数的各类知识点,将其进行应用,教师可以从平抛物体的运动轨迹为角度开展教学研究,鼓励学生使用函数的思想来解决生活中的问题,可以让学生从某一地点进行抛物试验,然后计算抛物点最高点高度,进而推算出来人能将物体抛到的最高点。在此策略的影响下,学生能有效的应对函数的变化,且能对函数的试题进行迅速反应,进一步提高学生的函数解题速度。

结束语

数学思维能力的培养对于学生的长远发展有着非常大的好处,良好的数学思维,能够让学生在面对各种题型时,充分发散自身思维,寻找到更多的解题办法。

[ 参 考 文 献 ]

[1]唐治强.从高考视角探析学生数学思维能力的培养[J].教育教学论坛:2012(05):12-13.

[2]檀凤敏.思维能力在高考复习中的提高[J].中国西部科技.2016(11):10-11.endprint

猜你喜欢
高考提高思维能力
提高幼儿教育质量的策略研究
让作文互评提高能力
漫谈初中作文教学
算错分,英“高考”推迟放榜