数形结合在小学数学中的运用浅谈

2018-02-25 14:21
关键词:数感数形直观

(吉林省通化市兴华教育集团第三小学 吉林通化 134000)

“数”主要指数及数量关系,“形”主要是指直观图形。数形结合就是通过数与形的相互转化、互相利用帮助学生建立数感;形成概念;理解算理;提高思维能力。也解决数学问题的重要的数学思想之一,更是教学中基本的数学方法。在教学中适时的渗透数形结合的思想,可以达到事半功倍的效果。本人结合教学实践总结如下几点与大家共同探讨:[1]

一、在教学数的认识时数形结合,帮助学生建立数感

《数学课程标准》中培养数感指数与数量、数量关系、运算结果估算等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的关系。并把培养学生数感作为义务教育阶段教育的一个重要目标。只有为学生提供充分的可感知的现实背景,才能使学生真正理解数的概念。数形结合就是把抽象的数学语言、数量关系和直观的几何图形、位置关系结合起来通过“以形助数”或“以数解形”即通过抽象思维与形象思维结合,可以使复杂问题简单化,抽象问题具体化。教学中通过正方形的数量与1000相对比,让学生在数数的过程中,体验“1000”的大小,建立“1000”的数感。数形结合是使复杂问题简单化,抽象问题具体化常用的数学思想方法。教学中通过让学生数一数、铺一铺、看一看等教学活动,使学生亲自体验到了“1000”这个数的大小。[2]

二、在教学概念时数形结合,帮助学生形成概念

建构主义认为学生学习活动的本质是:学习并非对于教师所授知识的被动接受,而是学习者以自身已有的知识经验为基础的主动建构过程。在小学阶段,教师如果能利用数形结合来建构概念,就便于学生更深刻地理解知识,更全面地揭示知识的本质。这样新学的知识就具有较高的稳定性和牢固性,而我们也达到了所需的教学效果。

在教学分数的初步认识时,通过具体形的操作与实践,让学生充分理解“平均分”,几分之一,几分之几教学概念,使数形紧密地结合在一起,把抽象的数学概念直观地呈现在学生面前,帮助学生理解掌握分数的知识。例如:“认识几分之一”时,我强调“数形结合”通过简单的直观图形逐步帮助学生建立起分数的概念。我先用一个圆表示一个饼,当着学生的面把这张饼对折后剪成两半,这半个饼可以用分数表示。并告诉学生:把一张饼平均分成两份,取其中的一份(半个),就是这张饼的二分之一,让学生初步感知二分之一。然后让学生动手操作,有自己喜欢的纸折出二分之一,涂上颜色,进一步理解,接着顺应学生爱表现的特性,放手让学生动手操作,创造分数,互动交流。我有选择的把学生作品贴在黑板上,然后让学生有选择地说一说这些分数是怎样来的,既尊重了学生的个性,又使学生建构了分数的表象。最后引导学生小结,这些形状各不相同,为什么涂色部分都能用二分之一来表示呢?使学生明白两点:①不同的形状可以表示相同的分数,相同形状的不同分法也可以表示同一分数;②把一个图形平均分成几份就表示几分之一。逐步去除分数的非本质属性,促使学生对分数本质含义的理解。

从上面的学习过程来看:学生经历了由具体到抽象的思维过程,也就是由直观的图像,抽象到几分之一,经历了由一般到特殊的思维过程。这样数形紧密地结合在一起,把抽象的数学概念直观地呈现在学生面前,帮助学生理解掌握分数的知识。

三、运用数形结合思想的具体策略

对于小学生来说,在众多的数学概念中,总是不可避免遇到一些抽象的概念知识,教师如果按照机械的方式一遍一遍地讲解,非但不会获得理想的效果,还会压抑学生的学习兴趣。这时,教师可以将抽象的知识直观化。以“倍数”的教学为例,当提到一个事物的质量是另一个事物的3倍的时候,学生不理解这个“倍”的概念。针对这样的问题,教师可以直接地用图形进行表达,让学生直观地看见这些知识,实现有效的理解。教师可以将物体的质量用正方形的面积来代替,假设第一个正方形的面积为1个单位,于是第二个正方形的面积为3个单位,教师再把两个正方形放在一起比较,学生可以直接地看到面积的比较,从而转换到倍数的理解上,实现了对倍数的理解。通过这样的方式,用转换的方式以图形来表示抽象的数学概念,学生可以直观地看见知识,获取更好的学习效果。

在高段数学教学中,学生接触到更为复杂的数学问题,不再是低年级时用简单的加减乘除就能理解,而要从题设背景中进行有效的分析。但是一旦学生遇到比较复杂的问题就无从下手了,这时教师可以用图形将复杂问题简单化。以追击问题求解教学为例,这类题型往往会根据速率的不同造成多种情况,学生如果不能理清题目的信息就很难有效理解。教师可以先将题设背景作全面的分析,让学生了解大致的信息,随后把习题中的各个数据在黑板上写出来,引导学生找到数量关系,接着教师再用直线段来表示题目中的主体,运用其中的数据进行分析,这时在追击问题中的相遇次数一目了然,再配合数据就可以非常简单地完成求解获得答案。通过这样的方式,用简单的图形和数据将复杂的数学问题变得十分简单,学生可以更快地解答难题,提高解题效率。

总之,在小学低段数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效率的学好数学知识,更有利于学生学习兴趣的培养、智力的开发、能力的增强,使教学收到事半功倍之效。最关键一点,能使抽象枯燥的数学知识,形象化具体化,使得数学教学充满乐趣,相信巧妙地运用数形结合,一定会引导学生由怕数学变成爱数学,为学生今后学习数学打下坚实的基础。[3]

猜你喜欢
数感数形直观
数形结合 理解坐标
浅谈构建数学模型,建立千以内数的数感
数形结合 相得益彰
直观构造中的代数刻画
数形结合百般好
数形结合 直观明了
简单直观≠正确
根据计数单位 直观数的大小
探究初中生数感的培养
新理念下学生数感培养策略